Abo Bibliothek: Guest
Critical Reviews™ in Immunology

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 1040-8401

ISSN Online: 2162-6472

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.3 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00079 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.24 SJR: 0.429 SNIP: 0.287 CiteScore™:: 2.7 H-Index: 81

Indexed in

DNA Methylation in T-Cell Development and Differentiation

Volumen 40, Ausgabe 2, 2020, pp. 135-156
DOI: 10.1615/CritRevImmunol.2020033728
Get accessGet access

ABSTRAKT

T lymphocytes undergo carefully orchestrated programming during development in the thymus and subsequently during differentiation in the periphery. This intricate specification allows for cell-type and context-specific transcriptional programs that regulate immune responses to infection and malignancy. Epigenetic changes, including histone modifications and covalent modification of DNA itself through DNA methylation, are now recognized to play a critical role in these cell-fate decisions. DNA methylation is mediated primarily by the actions of the DNA methyltransferase (DNMT) and ten-eleven-translocation (TET) families of epigenetic enzymes. In this review, we discuss the role of DNA methylation and its enzymatic regulators in directing the development and differentiation of CD4+ and CD8+ T-cells.

REFERENZEN
  1. Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME, Ukomadu C, Sadler KC, Pradhan S, Pellegrini M, Jacobsen SE. Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci U S A. 2010 May 11;107(19):8689-94. PubMed PMID: 20395551. PMCID: PMC2889301. Epub 2010/04/17. .

  2. Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science. 2010 May 14;328(5980):916-19. PubMed PMID: 20395474. Epub 2010/04/17. .

  3. Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyl-transferases. Nat Genet. 1998 Jul;19(3):219-20. PubMed PMID: 9662389. Epub 1998/07/14. .

  4. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999 Oct 29;99(3):247-57. PubMed PMID: 10555141. Epub 1999/11/11. .

  5. Cheng X, Roberts RJ. AdoMet-dependent methylation, DNA methyltransferases and base flipping. Nucleic Acids Res. 2001 Sep 15;29(18):3784-95. PubMed PMID: 11557810. PMCID: PMC55914. Epub 2001/09/15. .

  6. Jeltsch A. Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. Chembiochem. 2002 Apr 2;3(4):274-93. PubMed PMID: 11933228. Epub 2002/04/05. .

  7. Gowher H, Jeltsch A. Enzymatic properties of recombinant Dnmt3a DNA methyltransferase from mouse: the enzyme modifies DNA in a non-processive manner and also methylates non-CpG [correction of non-CpA] sites. J Mol Biol. 2001 Jun 22;309(5):1201-8. PubMed PMID: 11399089. Epub 2001/06/12. .

  8. Bashtrykov P, Jankevicius G, Smarandache A, Jurkowska RZ, Ragozin S, Jeltsch A. Specificity of Dnmt1 for methylation of hemimethylated CpG sites resides in its catalytic domain. Chem Biol. 2012 May 25;19(5):572-78. PubMed PMID: 22633409. Epub 2012/05/29. .

  9. Fatemi M, Hermann A, Pradhan S, Jeltsch A. The activity of the murine DNA methyltransferase Dnmt1 is controlled by interaction of the catalytic domain with the N-terminal part of the enzyme leading to an allosteric activation of the enzyme after binding to methylated DNA. J Mol Biol. 2001 Jun 22;309(5):1189-99. PubMed PMID: 11399088. Epub 2001/06/12. .

  10. Song J, Teplova M, Ishibe-Murakami S, Patel DJ. Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation. Science. 2012 Feb 10;335(6069):709-12. PubMed PMID: 22323818. PM-CID: PMC4693633. Epub 2012/02/11. .

  11. Takeshita K, Suetake I, Yamashita E, Suga M, Narita H, Nakagawa A, Tajima S. Structural insight into maintenance methylation by mouse DNA methyltransferase 1 (Dnmt1). Proc Natl Acad Sci U S A. 2011 May 31;108(22):9055-59. PubMed PMID: 21518897. PMCID: PMC3107267. Epub 2011/04/27. .

  12. Song J, Rechkoblit O, Bestor TH, Patel DJ. Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation. Science. 2011 Feb 25;331(6020):1036-40. PubMed PMID: 21163962. PM-CID: PMC4689315. Epub 2010/12/18. .

  13. Ishiyama S, Nishiyama A, Saeki Y, Moritsugu K, Morimoto D, Yamaguchi L, Arai N, Matsumura R, Kawakami T, Mishima Y, Hojo H, Shimamura S, Ishikawa F, Tajima S, Tanaka K, Ariyoshi M, Shirakawa M, Ikeguchi M, Kidera A, Suetake I, Arita K, Nakanishi M. Structure of the Dnmt1 reader module complexed with a unique two-mono-ubiquitin mark on histone H3 reveals the basis for DNA methylation maintenance. Mol Cell. 2017 Oct 19;68(2):350-60 e7. PubMed PMID: 29053958. Epub 2017/10/21. .

  14. Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science. 2007 Sep 21;317(5845):1760-64. PubMed PMID: 17673620. Epub 2007/08/04. .

  15. Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, Shinga J, Mizutani-Koseki Y, Toyoda T, Okamura K, Tajima S, Mitsuya K, Okano M, Koseki H. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature. 2007 Dec 6;450(7171):908-12. PubMed PMID: 17994007. Epub 2007/11/13. .

  16. Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, Li BF. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science. 1997 Sep 26;277(5334):1996-2000. PubMed PMID: 9302295. Epub 1997/09/26. .

  17. Leonhardt H, Page AW, Weier HU, Bestor TH. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell. 1992 Nov 27;71(5):865-73. PubMed PMID: 1423634. Epub 1992/11/27. .

  18. Pradhan M, Esteve PO, Chin HG, Samaranayke M, Kim GD, Pradhan S. CXXC domain of human DNMT1 is essential for enzymatic activity. Biochemistry. 2008 Sep 23;47(38):10000-9. PubMed PMID: 18754681. Epub 2008/08/30. .

  19. Klimasauskas S, Kumar S, Roberts RJ, Cheng X. HhaI methyltransferase flips its target base out of the DNA helix. Cell. 1994 Jan 28;76(2):357-69. PubMed PMID: 8293469. Epub 1994/01/28. .

  20. Qiu C, Sawada K, Zhang X, Cheng X. The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds. Nat Struct Biol. 2002 Mar;9(3):217-24. PubMed PMID: 11836534. PMCID: PMC4035047. Epub 2002/02/12. .

  21. Purdy MM, Holz-Schietinger C, Reich NO. Identification of a second DNA binding site in human DNA methyltransferase 3A by substrate inhibition and domain deletion. Arch Biochem Biophys. 2010 Jun 1;498(1):13-22. PubMed PMID: 20227382. Epub 2010/03/17. .

  22. Dhayalan A, Rajavelu A, Rathert P, Tamas R, Jurkowska RZ, Ragozin S, Jeltsch A. The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J Biol Chem. 2010 Aug 20;285(34):26114-20. PubMed PMID: 20547484. PMCID: PMC2924014. Epub 2010/06/16. .

  23. Ge YZ, Pu MT, Gowher H, Wu HP, Ding JP, Jeltsch A, Xu GL. Chromatin targeting of de novo DNA methyltrans-ferases by the PWWP domain. J Biol Chem. 2004 Jun 11;279(24):25447-54. PubMed PMID: 14998998. Epub 2004/03/05. .

  24. Chen T, Tsujimoto N, Li E. The PWWP domain of Dnmt3a and Dnmt3b is required for directing DNA methylation to the major satellite repeats at pericentric heterochromatin. Mol Cell Biol. 2004 Oct;24(20):9048-58. PubMed PMID: 15456878. PMCID: PMC517890. Epub 2004/10/01 .

  25. Shirohzu H, Kubota T, Kumazawa A, Sado T, Chijiwa T, Inagaki K, Suetake I, Tajima S, Wakui K, Miki Y, Hayashi M, Fukushima Y, Sasaki H. Three novel DNMT3B mutations in Japanese patients with ICF syndrome. Am J Med Genet. 2002 Sep 15;112(1):31-37. PubMed PMID: 12239717. Epub 2002/09/20. .

  26. Otani J, Nankumo T, Arita K, Inamoto S, Ariyoshi M, Shirakawa M. Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain. EMBO Rep. 2009 Nov;10(11):1235-41. PubMed PMID: 19834512. PM-CID: PMC2775176. Epub 2009/10/17. .

  27. Fuks F, Burgers WA, Godin N, Kasai M, Kouzarides T. Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J. 2001 May 15;20(10):2536-44. PubMed PMID: 11350943. PMCID: PMC125250. Epub 2001/05/15. .

  28. Brenner C, Deplus R, Didelot C, Loriot A, Vire E, De Smet C, Gutierrez A, Danovi D, Bernard D, Boon T, Pelicci PG, Amati B, Kouzarides T, de Launoit Y, Di Croce L, Fuks F. Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J. 2005 Jan 26;24(2):336-46. PubMed PMID: 15616584. PMCID: PMC545804. Epub 2004/12/24. .

  29. Tajima S, Suetake I, Takeshita K, Nakagawa A, Kimura H. Domain structure of the Dnmt1, Dnmt3a, and Dnmt3b DNA Methyltransferases. Adv Exp Med Biol. 2016;945: 63-86. PubMed PMID: 27826835. Epub 2016/11/09. .

  30. Guo X, Wang L, Li J, Ding Z, Xiao J, Yin X, He S, Shi P, Dong L, Li G, Tian C, Wang J, Cong Y, Xu Y. Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature. 2015 Jan 29;517(7536):640-44. PubMed PMID: 25383530. Epub 2014/11/11. .

  31. Lorsbach RB, Moore J, Mathew S, Raimondi SC, Mukatira ST, Downing JR. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia. 2003 Mar;17(3):637-41. PubMed PMID: 12646957. Epub 2003/03/21. .

  32. Ono R, Taki T, Taketani T, Taniwaki M, Kobayashi H, Hayashi Y. LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23). Cancer Res. 2002 Jul 15;62(14):4075-80. PubMed PMID: 12124344. Epub 2002/07/19. .

  33. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009 May 15;324(5929):930-35. PubMed PMID: 19372391. PMCID: PMC2715015. Epub 2009/04/18. .

  34. Iyer LM, Tahiliani M, Rao A, Aravind L. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle. 2009 Jun 1;8(11):1698-710. PubMed PMID: 19411852. PMCID: PMC2995806. Epub 2009/05/05. .

  35. Ko M, An J, Bandukwala HS, Chavez L, Aijo T, Pastor WA, Segal MF, Li H, Koh KP, Lahdesmaki H, Hogan PG, Aravind L, Rao A. Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature. 2013 May 02;497(7447):122-26. PubMed PMID: 23563267. PMCID: PMC3643997. Epub 2013/04/09. .

  36. Carty SA, Gohil M, Banks LB, Cotton RM, Johnson ME, Stelekati E, Wells AD, Wherry EJ, Koretzky GA, Jordan MS. The loss of TET2 promotes CD8(+) T-cell memory differentiation. J Immunol. 2018 Jan 1;200(1):82-91. PubMed PMID: 29150566. PMCID: PMC5736442. Epub 2017/11/19. .

  37. He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song CX, Zhang K, He C, Xu GL. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011 Sep 2;333(6047):1303-7. PubMed PMID: 21817016. PMCID: PMC3462231. Epub 2011/08/06. .

  38. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011 Sep 2;333(6047):1300-3. PubMed PMID: 21778364. PMCID: PMC3495246. Epub 2011/07/23. .

  39. Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010 Aug 26;466(7310):1129-33. PubMed PMID: 20639862. PMCID: PMC3491567. Epub 2010/07/20. .

  40. Hashimoto H, Liu Y, Upadhyay AK, Chang Y, Howerton SB, Vertino PM, Zhang X, Cheng X. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res. 2012 Jun;40(11):4841-49. PubMed PMID: 22362737. PMCID: PMC3367191. Epub 2012/03/01. .

  41. Otani J, Kimura H, Sharif J, Endo TA, Mishima Y, Kawakami T, Koseki H, Shirakawa M, Suetake I, Tajima S. Cell cycle-dependent turnover of 5-hydroxymethyl cytosine in mouse embryonic stem cells. PLoS One. 2013;8(12):e82961. PubMed PMID: 24340069. PMCID: PMC3858372. Epub 2013/12/18. .

  42. Seiler CL, Fernandez J, Koerperich Z, Andersen MP, Kotandeniya D, Nguyen ME, Sham YY, Tretyakova NY. Maintenance DNA methyltransferase activity in the presence of oxidized forms of 5-methylcytosine: structural basis for ten eleven translocation-mediated DNA demethylation. Biochemistry. 2018 Oct 23;57(42):6061-69. PubMed PMID: 30230311. PMCID: PMC6310613. Epub 2018/09/20. .

  43. Maiti A, Drohat AC. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem. 2011 Oct 14;286(41):35334-38. PubMed PMID: 21862836. PMCID: PMC3195571. Epub 2011/08/25. .

  44. Weber AR, Krawczyk C, Robertson AB, Kusnierczyk A, Vagbo CB, Schuermann D, Klungland A, Schar P. Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism. Nat Commun. 2016 Mar 2;7:10806. PubMed PMID: 26932196. PMCID: PMC4778062. Epub 2016/03/05. .

  45. Zhang L, Lu X, Lu J, Liang H, Dai Q, Xu GL, Luo C, Jiang H, He C. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat Chem Biol. 2012 Feb 12;8(4):328-30. PubMed PMID: 22327402. PMCID: PMC3307914. Epub 2012/02/14. .

  46. Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009 May 15;324(5929):929-30. PubMed PMID: 19372393. PMCID: PMC3263819. Epub 2009/04/18. .

  47. Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, Li Y, Chen CH, Zhang W, Jian X, Wang J, Zhang L, Looney TJ, Zhang B, Godley LA, Hicks LM, Lahn BT, Jin P, He C. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol. 2011 Jan;29(1):68-72. PubMed PMID: 21151123. PM-CID: PMC3107705. Epub 2010/12/15. .

  48. Globisch D, Munzel M, Muller M, Michalakis S, Wagner M, Koch S, Bruckl T, Biel M, Carell T. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One. 2010 Dec 23;5(12):e15367. PubMed PMID: 21203455. PMCID: PMC3009720. Epub 2011/01/05. .

  49. Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PW, Bauer C, Munzel M, Wagner M, Muller M, Khan F, Eberl HC, Mensinga A, Brinkman AB, Lephikov K, Muller U, Walter J, Boelens R, van Ingen H, Leonhardt H, Carell T, Vermeulen M. Dynamic readers for 5-(hydroxy) methylcytosine and its oxidized derivatives. Cell. 2013 Feb 28;152(5):1146-59. PubMed PMID: 23434322. Epub 2013/02/26. .

  50. Iurlaro M, Ficz G, Oxley D, Raiber EA, Bachman M, Booth MJ, Andrews S, Balasubramanian S, Reik W. A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol. 2013;14(10):R119. PubMed PMID: 24156278. PMCID: PMC4014808. Epub 2013/10/26. .

  51. Mellen M, Ayata P, Heintz N. 5-hydroxymethylcytosine accumulation in postmitotic neurons results in functional demethylation of expressed genes. Proc Natl Acad Sci U S A. 2017 Sep 12;114(37):E7812-E7821. PubMed PMID: 28847947. PMCID: PMC5604027. Epub 2017/08/30. .

  52. Jin SG, Kadam S, Pfeifer GP. Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res. 2010 Jun;38(11):e125. PubMed PMID: 20371518. PMCID: PMC2887978. Epub 2010/04/08. .

  53. Tsagaratou A, Aijo T, Lio CW, Yue X, Huang Y, Jacobsen SE, Lahdesmaki H, Rao A. Dissecting the dynamic changes of 5-hydroxymethylcytosine in T-cell development and differentiation. Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):E3306-E3315. PubMed PMID: 25071199. PMCID: PMC4136618. Epub 2014/07/30. .

  54. Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel J, Wadleigh M, Malinge S, Yao J, Kilpivaara O, Bhat R, Huberman K, Thomas S, Dolgalev I, Heguy A, Paietta E, Le Beau MM, Beran M, Tallman MS, Ebert BL, Kantarjian HM, Stone RM, Gilliland DG, Crispino JD, Levine RL. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood. 2009 Jul 2;114(1):144-47. PubMed PMID: 19420352. PMCID: PMC2710942. Epub 2009/05/08. .

  55. Tefferi A, Lim KH, Abdel-Wahab O, Lasho TL, Patel J, Patnaik MM, Hanson CA, Pardanani A, Gilliland DG, Levine RL. Detection of mutant TET2 in myeloid malignancies other than myeloproliferative neoplasms: CMML, MDS, MDS/MPN and AML. Leukemia. 2009 Jul;23(7):1343-45. PubMed PMID: 19295549. PMCID: PMC4654626. Epub 2009/03/20. .

  56. Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, An J, Lamperti ED, Koh KP, Ganetzky R, Liu XS, Aravind L, Agarwal S, Maciejewski JP, Rao A. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 2010 Dec 09;468(7325):839-43. PubMed PMID: 21057493. PM-CID: PMC3003755. Epub 2010/11/09. .

  57. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J, Harris CC, Lichti CF, Townsend RR, Fulton RS, Dooling DJ, Koboldt DC, Schmidt H, Zhang Q, Osborne JR, Lin L, O'Laughlin M, McMichael JF, Delehaunty KD, Mc-Grath SD, Fulton LA, Magrini VJ, Vickery TL, Hundal J, Cook LL, Conyers JJ, Swift GW, Reed JP, Alldredge PA, Wylie T, Walker J, Kalicki J, Watson MA, Heath S, Shannon WD, Varghese N, Nagarajan R, Westervelt P, Tomasson MH, Link DC, Graubert TA, DiPersio JF, Mardis ER, Wilson RK. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010 Dec 16;363(25):2424-33. PubMed PMID: 21067377. PMCID: PMC3201818. Epub 2010/11/12. .

  58. Walter MJ, Ding L, Shen D, Shao J, Grillot M, McLellan M, Fulton R, Schmidt H, Kalicki-Veizer J, O'Laughlin M, Kandoth C, Baty J, Westervelt P, DiPersio JF, Mardis ER, Wilson RK, Ley TJ, Graubert TA. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia. 2011 Jul;25(7):1153-58. PubMed PMID: 21415852. PMCID: PMC3202965. Epub 2011/03/19. .

  59. Lemonnier F, Couronne L, Parrens M, Jais JP, Travert M, Lamant L, Tournillac O, Rousset T, Fabiani B, Cairns RA, Mak T, Bastard C, Bernard OA, de Leval L, Gaulard P. Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood. 2012 Aug 16;120(7):1466-69. PubMed PMID: 22760778. Epub 2012/07/05. .

  60. Couronne L, Bastard C, Bernard OA. TET2 and DNMT3A mutations in human T-cell lymphoma. N Engl J Med. 2012 Jan 5;366(1):95-96. PubMed PMID: 22216861. Epub 2012/01/06. .

  61. Palomero T, Couronne L, Khiabanian H, Kim MY, Ambesi-Impiombato A, Perez-Garcia A, Carpenter Z, Abate F, Allegretta M, Haydu JE, Jiang X, Lossos IS, Nicolas C, Balbin M, Bastard C, Bhagat G, Piris MA, Campo E, Bernard OA, Rabadan R, Ferrando AA. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T-cell lymphomas. Nat Genet. 2014 Feb;46(2):166-70. PubMed PMID: 24413734. PMCID: PMC3963408. Epub 2014/01/15. .

  62. Odejide O, Weigert O, Lane AA, Toscano D, Lunning MA, Kopp N, Kim S, van Bodegom D, Bolla S, Schatz JH, Teruya-Feldstein J, Hochberg E, Louissaint A, Dorfman D, Stevenson K, Rodig SJ, Piccaluga PP, Jacobsen E, Pileri SA, Harris NL, Ferrero S, Inghirami G, Horwitz SM, Weinstock DM. A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. Blood. 2014 Feb 27;123(9):1293-96. PubMed PMID: 24345752. PMCID: PMC4260974. Epub 2013/12/19. .

  63. Yui MA, Rothenberg EV. Developmental gene networks: a triathlon on the course to T-cell identity. Nat Rev Immunol. 2014 Aug;14(8):529-45. PubMed PMID: 25060579. PMCID: PMC4153685. Epub 2014/07/26. .

  64. Stritesky GL, Jameson SC, Hogquist KA. Selection of self-reactive T-cells in the thymus. Annu Rev Immunol. 2012;30:95-114. PubMed PMID: 22149933. PMCID: PMC3518413. Epub 2011/12/14. .

  65. Ji H, Ehrlich LI, Seita J, Murakami P, Doi A, Lindau P, Lee H, Aryee MJ, Irizarry RA, Kim K, Rossi DJ, Inlay MA, Serwold T, Karsunky H, Ho L, Daley GQ, Weissman IL, Feinberg AP. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature. 2010 Sep 16;467(7313):338-42. PubMed PMID: 20720541. PMCID: PMC2956609. Epub 2010/08/20. .

  66. Broske AM, Vockentanz L, Kharazi S, Huska MR, Mancini E, Scheller M, Kuhl C, Enns A, Prinz M, Jaenisch R, Nerlov C, Leutz A, Andrade-Navarro MA, Jacobsen SE, Rosenbauer F. DNA methylation protects hemato-poietic stem cell multipotency from myeloerythroid restriction. Nat Genet. 2009 Nov;41(11):1207-15. PubMed PMID: 19801979. Epub 2009/10/06. .

  67. Issuree PD, Ng CP, Littman DR. Heritable gene regulation in the CD4:CD8 T-cell lineage choice. Front Immunol. 2017;8:291. PubMed PMID: 28382035. PMCID: PMC5360760. Epub 2017/04/07. .

  68. Sellars M, Huh JR, Day K, Issuree PD, Galan C, Gobeil S, Absher D, Green MR, Littman DR. Regulation of DNA methylation dictates Cd4 expression during the development of helper and cytotoxic T-cell lineages. Nat Immunol. 2015 Jul;16(7):746-54. PubMed PMID: 26030024. PMCID: PMC4474743. Epub 2015/06/02. .

  69. Issuree PD, Day K, Au C, Raviram R, Zappile P, Skok JA, Xue HH, Myers RM, Littman DR. Stage-specific epigenetic regulation of CD4 expression by coordinated enhancer elements during T-cell development. Nat Commun. 2018 Sep 5;9(1):3594. PubMed PMID: 30185805. PMCID: PMC6125341. Epub 2018/09/07. .

  70. Rodriguez RM, Suarez-Alvarez B, Mosen-Ansorena D, Garcia-Peydro M, Fuentes P, Garcia-Leon MJ, Gonzalez-Lahera A, Macias-Camara N, Toribio ML, Aransay AM, Lopez-Larrea C. Regulation of the transcriptional program by DNA methylation during human alphabeta T-cell development. Nucleic Acids Res. 2015 Jan;43(2):760-74. PubMed PMID: 25539926. PMCID: PMC4333391. Epub 2014/12/30. .

  71. Lee PP, Fitzpatrick DR, Beard C, Jessup HK, Lehar S, Makar KW, Perez-Melgosa M, Sweetser MT, Schlissel MS, Nguyen S, Cherry SR, Tsai JH, Tucker SM, Weaver WM, Kelso A, Jaenisch R, Wilson CB. A critical role for Dnmt1 and DNA methylation in T-cell development, function, and survival. Immunity. 2001 Nov;15(5):763-74. PubMed PMID: 11728338. Epub 2001/12/01. .

  72. Gamper CJ, Agoston AT, Nelson WG, Powell JD. Identification of DNA methyltransferase 3a as a T-cell receptor-induced regulator of Th1 and Th2 differentiation. J Immunol. 2009 Aug 15;183(4):2267-76. PubMed PMID: 19625655. PMCID: PMC2818975. Epub 2009/07/25. .

  73. Kramer AC, Kothari A, Wilson WC, Celik H, Nikitas J, Mallaney C, Ostrander EL, Eultgen E, Martens A, Valentine MC, Young AL, Druley TE, Figueroa ME, Zhang B, Challen GA. Dnmt3a regulates T-cell development and suppresses T-ALL transformation. Leukemia. 2017 Nov;31(11):2479-90. PubMed PMID: 28321121. PM-CID: PMC5636646. Epub 2017/03/23. .

  74. Neumann M, Heesch S, Schlee C, Schwartz S, Gokbuget N, Hoelzer D, Konstandin NP, Ksienzyk B, Vosberg S, Graf A, Krebs S, Blum H, Raff T, Bruggemann M, Hofmann WK, Hecht J, Bohlander SK, Greif PA, Baldus CD. Whole-exome sequencing in adult ETP-ALL reveals a high rate of DNMT3A mutations. Blood. 2013 Jun 6;121(23):4749-52. PubMed PMID: 23603912. Epub 2013/04/23. .

  75. Heng TS, Painter MW, Immunological Genome Project C. The immunological genome project: networks of gene expression in immune cells. Nat Immunol. 2008 0ct;9(10):1091-94. PubMed PMID: 18800157. Epub 2008/09/19. .

  76. Tsagaratou A, Gonzalez-Avalos E, Rautio S, Scott-Browne JP, Togher S, Pastor WA, Rothenberg EV, Chavez L, Lahdesmaki H, Rao A. TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells. Nat Immunol. 2017 Jan;18(1):45-53. PubMed PMID: 27869820. PMCID: PMC5376256. Epub 2016/11/22. .

  77. Lee YJ, Holzapfel KL, Zhu J, Jameson SC, Hogquist KA. Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat Immunol. 2013 Nov;14(11):1146-54. PubMed PMID: 24097110. PMCID: PMC3824254. Epub 2013/10/08. .

  78. Ichiyama K, Chen T, Wang X, Yan X, Kim BS, Tanaka S, Ndiaye-Lobry D, Deng Y, Zou Y, Zheng P, Tian Q, Aifantis I, Wei L, Dong C. The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T-cells. Immunity. 2015 Apr 21;42(4):613-26. PubMed PMID: 25862091. PMCID: PMC4956728. Epub 2015/04/12. .

  79. Jones B, Chen J. Inhibition of IFN-gamma transcription by site-specific methylation during T helper cell development. EMBO J. 2006 Jun 7;25(11):2443-52. PubMed PMID: 16724115. PMCID: PMC1478170. Epub 2006/05/26. .

  80. Young HA, Ghosh P, Ye J, Lederer J, Lichtman A, Gerard JR, Penix L, Wilson CB, Melvin AJ, McGurn ME. Differentiation of the T helper phenotypes by analysis of the methylation state of the IFN-gamma gene. J Immunol. 1994 Oct 15;153(8):3603-10. PubMed PMID: 7523497. Epub 1994/10/15. .

  81. Agarwal S, Rao A. Modulation of chromatin structure reg-ulates cytokine gene expression during T-cell differentiation. Immunity. 1998 Dec;9(6):765-75. PubMed PMID: 9881967. Epub 1999/01/09. .

  82. Bird JJ, Brown DR, Mullen AC, Moskowitz NH, Mahowald MA, Sider JR, Gajewski TF, Wang CR, Reiner SL. Helper T-cell differentiation is controlled by the cell cycle. Immunity. 1998 Aug;9(2):229-37. PubMed PMID: 9729043. Epub 1998/09/05. .

  83. Lee DU, Agarwal S, Rao A. Th2 lineage commitment and efficient IL-4 production involves extended demethylation of the IL-4 gene. Immunity. 2002 May;16(5):649-60. PubMed PMID: 12049717. Epub 2002/06/07. .

  84. Winders BR, Schwartz RH, Bruniquel D. A distinct region of the murine IFN-gamma promoter is hypomethylated from early T-cell development through mature naive and Th1 cell differentiation, but is hypermethylated in Th2 cells. J Immunol. 2004 Dec 15;173(12):7377-84. PubMed PMID: 15585862. Epub 2004/12/09. .

  85. Schoenborn JR, Dorschner MO, Sekimata M, Santer DM, Shnyreva M, Fitzpatrick DR, Stamatoyannopoulos JA, Wilson CB. Comprehensive epigenetic profiling identifies multiple distal regulatory elements directing transcription of the gene encoding interferon-gamma. Nat Immunol. 2007 Jul;8(7):732-42. PubMed PMID: 17546033. PM-CID: PMC2144744. Epub 2007/06/05. .

  86. Kim ST, Fields PE, Flavell RA. Demethylation of a specific hypersensitive site in the Th2 locus control region. Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):17052- 57. PubMed PMID: 17940027. PMCID: PMC2040439. Epub 2007/10/18. .

  87. Santangelo S, Cousins DJ, Winkelmann NE, Staynov DZ. DNA methylation changes at human Th2 cytokine genes coincide with DNase I hypersensitive site formation during CD4(+) T-cell differentiation. J Immunol. 2002 Aug 15;169(4):1893-903. PubMed PMID: 12165514. Epub 2002/08/08. .

  88. Guo L, Hu-Li J, Zhu J, Watson CJ, Difilippantonio MJ, Pannetier C, Paul WE. In TH2 cells the Il4 gene has a series of accessibility states associated with distinctive probabilities of IL-4 production. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10623-28. PubMed PMID: 12149469. PMCID: PMC124993. Epub 2002/08/01. .

  89. Nestor CE, Lentini A, Hagg Nilsson C, Gawel DR, Gustafsson M, Mattson L, Wang H, Rundquist O, Meehan RR, Klocke B, Seifert M, Hauck SM, Laumen H, Zhang H, Benson M. 5-hydroxymethylcytosine remodeling precedes lineage specification during differentiation of human CD4(+) T-cells. Cell Rep. 2016 Jul 12;16(2):559-70. PubMed PMID: 27346350. PMCID: PMC5868728. Epub 2016/06/28. .

  90. Makar KW, Perez-Melgosa M, Shnyreva M, Weaver WM, Fitzpatrick DR, Wilson CB. Active recruitment of DNA methyltransferases regulates interleukin 4 in thymocytes and T-cells. Nat Immunol. 2003 Dec;4(12):1183-90. PubMed PMID: 14595437. Epub 2003/11/05. .

  91. Thomas RM, Gamper CJ, Ladle BH, Powell JD, Wells AD. De novo DNA methylation is required to restrict T helper lineage plasticity. J Biol Chem. 2012 Jun 29;287(27):22900-9. PubMed PMID: 22584578. PM-CID: PMC3391093. Epub 2012/05/16. .

  92. Li X, Liang Y, LeBlanc M, Benner C, Zheng Y. Function of a Foxp3 ciselement in protecting regulatory T-cell identity. Cell. 2014 Aug 14;158(4):734-48. PubMed PMID: 25126782. PMCID: PMC4151505. Epub 2014/08/16. .

  93. Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature. 2010 Feb 11;463(7282):808-12. PubMed PMID: 20072126. PMCID: PMC2884187. Epub 2010/01/15. .

  94. Feng Y, Arvey A, Chinen T, van der Veeken J, Gasteiger G, Rudensky AY. Control of the inheritance of regulatory T-cell identity by a cis element in the Foxp3 locus. Cell. 2014 Aug 14;158(4):749-63. PubMed PMID: 25126783. PMCID: PMC4151558. Epub 2014/08/16. .

  95. Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J, Schlawe K, Chang HD, Bopp T, Schmitt E, Klein-Hessling S, Serfling E, Hamann A, Huehn J. Epigenetic control of the foxp3 locus in regulatory T-cells. PLoS Biol. 2007 Feb;5(2):e38. PubMed PMID: 17298177. PMCID: PMC1783672. Epub 2007/02/15. .

  96. Kim HP, Leonard WJ. CREB/ATF-dependent T-cell receptor-induced FoxP3 gene expression: a role for DNA methylation. J Exp Med. 2007 Jul 9;204(7):1543-51. PubMed PMID: 17591856. PMCID: PMC2118651. Epub 2007/06/27. .

  97. Tone Y, Furuuchi K, Kojima Y, Tykocinski ML, Greene MI, Tone M. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol. 2008 Feb;9(2):194-202. PubMed PMID: 18157133. Epub 2007/12/25. .

  98. Ogawa C, Tone Y, Tsuda M, Peter C, Waldmann H, Tone M. TGF-beta-mediated Foxp3 gene expression is cooperatively regulated by Stat5, Creb, and AP-1 through CNS2. J Immunol. 2014 Jan 1;192(1):475-83. PubMed PMID: 24298014. PMCID: PMC3905572. Epub 2013/ 12/04. .

  99. Ohkura N, Hamaguchi M, Morikawa H, Sugimura K, Tanaka A, Ito Y, Osaki M, Tanaka Y, Yamashita R, Nakano N, Huehn J, Fehling HJ, Sparwasser T, Nakai K, Sakaguchi S. T-cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity. 2012 Nov 16;37(5):785-99. PubMed PMID: 23123060. Epub 2012/11/06. .

  100. Josefowicz SZ, Wilson CB, Rudensky AY. Cutting edge: TCR stimulation is sufficient for induction of Foxp3 expression in the absence of DNA methyltransferase 1. J Immunol. 2009 Jun 1;182(11):6648-52. PubMed PMID: 19454658. Epub 2009/05/21. .

  101. Polansky JK, Kretschmer K, Freyer J, Floess S, Garbe A, Baron U, Olek S, Hamann A, von Boehmer H, Huehn J. DNA methylation controls Foxp3 gene expression. Eur J Immunol. 2008 Jun;38(6):1654-63. PubMed PMID: 18493985. Epub 2008/05/22. .

  102. Wang L, Liu Y, Beier UH, Han R, Bhatti TR, Akimova T, Hancock WW. Foxp3+ T-regulatory cells require DNA methyltransferase 1 expression to prevent development of lethal autoimmunity. Blood. 2013 May 2;121(18):3631-39. PubMed PMID: 23444399. PMCID: PMC3643763. Epub 2013/02/28. .

  103. Sasidharan Nair V, Song MH, Oh KI. Vitamin C Facilitates Demethylation of the Foxp3 Enhancer in a Tet-Dependent Manner. J Immunol. 2016 Mar 1;196(5):2119-31. PubMed PMID: 26826239. Epub 2016/01/31. .

  104. Yue X, Trifari S, Aijo T, Tsagaratou A, Pastor WA, Zepeda-Martinez JA, Lio CW, Li X, Huang Y, Vijayanand P, Lahdesmaki H, Rao A. Control of Foxp3 stability through modulation of TET activity. J Exp Med. 2016 Mar 7;213(3):377-97. PubMed PMID: 26903244. PMCID: PMC4813667. Epub 2016/02/24. .

  105. Yue X, Lio CJ, Samaniego-Castruita D, Li X, Rao A. Loss of TET2 and TET3 in regulatory T-cells unleashes effector function. Nat Commun. 2019 May 1;10(1):2011. PubMed PMID: 31043609. PMCID: PMC6494907. Epub 2019/05/03. .

  106. Yang R, Qu C, Zhou Y, Konkel JE, Shi S, Liu Y, Chen C, Liu S, Liu D, Chen Y, Zandi E, Chen W, Zhou Y, Shi S. Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T-cell differentiation and maintain immune homeostasis. Immunity. 2015 Aug 18;43(2):251-63. PubMed PMID: 26275994. PM-CID: PMC4731232. Epub 2015/08/16. .

  107. Panduro M, Benoist C, Mathis D. Tissue Tregs. Annu Rev Immunol. 2016 May 20;34:609-33. PubMed PMID: 27168246. PMCID: PMC4942112. Epub 2016/05/12. .

  108. Delacher M, Imbusch CD, Weichenhan D, Breiling A, Hotz-Wagenblatt A, Trager U, Hofer AC, Kagebein D, Wang Q, Frauhammer F, Mallm JP, Bauer K, Herrmann C, Lang PA, Brors B, Plass C, Feuerer M. Genome-wide DNA-methylation landscape defines specialization of regulatory T-cells in tissues. Nat Immunol. 2017 Oct;18(10):1160-72. PubMed PMID: 28783152. PMCID: PMC5912503. Epub 2017/08/08. .

  109. Yang BH, Floess S, Hagemann S, Deyneko IV, Groebe L, Pezoldt J, Sparwasser T, Lochner M, Huehn J. Development of a unique epigenetic signature during in vivo Th17 differentiation. Nucleic Acids Res. 2015 Feb 18;43(3):1537-48. PubMed PMID: 25593324. PMCID: PMC4330377. Epub 2015/01/17. .

  110. Thomas RM, Sai H, Wells AD. Conserved intergenic elements and DNA methylation cooperate to regulate transcription at the il17 locus. J Biol Chem. 2012 Jul 20;287(30):25049-59. PubMed PMID: 22665476. PM-CID: PMC3408191. Epub 2012/06/06. .

  111. Xu T, Stewart KM, Wang X, Liu K, Xie M, Ryu JK, Li K, Ma T, Wang H, Ni L, Zhu S, Cao N, Zhu D, Zhang Y, Akassoglou K, Dong C, Driggers EM, Ding S. Metabolic control of TH17 and induced Treg cell balance by an epigenetic mechanism. Nature. 2017 Aug 10;548(7666):228-33. PubMed PMID: 28783731. Epub 2017/08/08. .

  112. Liu X, Lu H, Chen T, Nallaparaju KC, Yan X, Tanaka S, Ichiyama K, Zhang X, Zhang L, Wen X, Tian Q, Bian XW, Jin W, Wei L, Dong C. Genome-wide analysis identifies Bcl6-controlled regulatory networks during T-follicular helper-cell differentiation. Cell Rep. 2016 Feb 23;14(7):1735-47. PubMed PMID: 26876184. PMCID: PMC4975778. Epub 2016/02/16. .

  113. Sakata-Yanagimoto M, Enami T, Yoshida K, Shiraishi Y, Ishii R, Miyake Y, Muto H, Tsuyama N, Sato-Otsubo A, Okuno Y, Sakata S, Kamada Y, Nakamoto-Matsubara R, Tran NB, Izutsu K, Sato Y, Ohta Y, Furuta J, Shimizu S, Komeno T, Sato Y, Ito T, Noguchi M, Noguchi E, Sanada M, Chiba K, Tanaka H, Suzukawa K, Nanmoku T, Hasegawa Y, Nureki O, Miyano S, Nakamura N, Takeuchi K, Ogawa S, Chiba S. Somatic RHOA mutation in angioimmunoblastic T-cell lymphoma. Nat Genet. 2014 Feb;46(2):171-75. PubMed PMID: 24413737. Epub 2014/01/15. .

  114. Zang S, Li J, Yang H, Zeng H, Han W, Zhang J, Lee M, Moczygemba M, Isgandarova S, Yang Y, Zhou Y, Rao A, You MJ, Sun D, Huang Y. Mutations in 5-methylcytosine oxidase TET2 and RhoA cooperatively disrupt T-cell homeostasis. J Clin Invest. 2017 Aug 1;127(8):2998-3012. PubMed PMID: 28691928. PMCID: PMC5531410. Epub 2017/07/12. .

  115. Cortes JR, Ambesi-Impiombato A, Couronne L, Quinn SA, Kim CS, da Silva Almeida AC, West Z, Belver L, Martin MS, Scourzic L, Bhagat G, Bernard OA, Ferrando AA, Palomero T. RHOA G17V induces T follicular helper cell specification and promotes lymphomagenesis. Cancer Cell. 2018 Feb 12;33(2):259-73 e7. PubMed PMID: 29398449. PMCID: PMC5811310. Epub 2018/02/06. .

  116. Ng SY, Brown L, Stevenson K, deSouza T, Aster JC, Louissaint Jr A, Weinstock DM. RhoA G17V is sufficient to induce autoimmunity and promotes T-cell lymphomagen- esis in mice. Blood. 2018 Aug 30;132(9):935-47. PubMed PMID: 29769264. Epub 2018/05/18. .

  117. Durek P, Nordstrom K, Gasparoni G, Salhab A, Kressler C, de Almeida M, Bassler K, Ulas T, Schmidt F, Xiong J, Glazar P, Klironomos F, Sinha A, Kinkley S, Yang X, Arrigoni L, Amirabad AD, Ardakani FB, Feuerbach L, Gorka O, Ebert P, Muller F, Li N, Frischbutter S, Schlickeiser S, Cendon C, Frohler S, Felder B, Gasparoni N, Imbusch CD, Hutter B, Zipprich G, Tauchmann Y, Reinke S, Wassilew G, Hoffmann U, Richter AS, Sieverling L, Consortium D, Chang HD, Syrbe U, Kalus U, Eils J, Brors B, Manke T, Ruland J, Lengauer T, Rajewsky N, Chen W, Dong J, Sawitzki B, Chung HR, Rosenstiel P, Schulz MH, Schultze JL, Radbruch A, Walter J, Hamann A, Polansky JK. Epigenomic profiling of human CD4(+) T-cells supports a linear differentiation model and highlights molecular regulators of memory development. Immunity. 2016 Nov 15;45(5):1148-61. PubMed PMID: 27851915. Epub 2016/11/17. .

  118. Hale JS, Youngblood B, Latner DR, Mohammed AU, Ye L, Akondy RS, Wu T, Iyer SS, Ahmed R. Distinct memory CD4+ T-cells with commitment to T follicular helper- and T helper 1-cell lineages are generated after acute viral infection. Immunity. 2013 Apr 18;38(4):805-17. PubMed PMID: 23583644. PMCID: PMC3741679. Epub 2013/04/16. .

  119. Hashimoto S, Ogoshi K, Sasaki A, Abe J, Qu W, Nakatani Y, Ahsan B, Oshima K, Shand FH, Ametani A, Suzuki Y, Kaneko S, Wada T, Hattori M, Sugano S, Morishita S, Matsushima K. Coordinated changes in DNA methylation in antigen-specific memory CD4 T-cells. J Immunol. 2013 Apr 15;190(8):4076-91. PubMed PMID: 23509353. PM-CID: PMC3619526. Epub 2013/03/20. .

  120. Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R. Selective expression of the interleukin 7 receptor identifies effector CD8 T-cells that give rise to long-lived memory cells. Nat Immunol. 2003 Dec;4(12):1191-98. PubMed PMID: 14625547. Epub 2003/11/20. .

  121. Joshi NS, Cui W, Chandele A, Lee HK, Urso DR, Hagman J, Gapin L, Kaech SM. Inflammation directs memory precursor and short-lived effector CD8(+) T-cell fates via the graded expression of T-bet transcription factor. Immunity. 2007 Aug;27(2):281-95. PubMed PMID: 17723218. PM-CID: PMC2034442. Epub 2007/08/29. .

  122. Sarkar S, Kalia V, Haining WN, Konieczny BT, Subramaniam S, Ahmed R. Functional and genomic profiling of effector CD8 T-cell subsets with distinct memory fates. J Exp Med. 2008 Mar 17;205(3):625-40. PubMed PMID: 18316415. PMCID: PMC2275385. Epub 2008/03/05. .

  123. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999 Oct 14;401(6754):708-12. PubMed PMID: 10537110. Epub 1999/10/28. .

  124. Scharer CD, Barwick BG, Youngblood BA, Ahmed R, Boss JM. Global DNA methylation remodeling accompanies CD8 T-cell effector function. J Immunol. 2013 Sep 15;191(6):3419-29. PubMed PMID: 23956425. PMCID: PMC3800465. Epub 2013/08/21. .

  125. Youngblood B, Hale JS, Kissick HT, Ahn E, Xu X, Wieland A, Araki K, West EE, Ghoneim HE, Fan Y, Dogra P, Davis CW, Konieczny BT, Antia R, Cheng X, Ahmed R. Effector CD8 T-cells dedifferentiate into long-lived memory cells. Nature. 2017 Dec 21;552(7685):404-9. PubMed PMID: 29236683. PMCID: PMC5965677. Epub 2017/12/14. .

  126. Ladle BH, Li KP, Phillips MJ, Pucsek AB, Haile A, Powell JD, Jaffee EM, Hildeman DA, Gamper CJ. De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8+ T-cell fate decisions following activation. Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):10631-36. PubMed PMID: 27582468. PMCID: PMC5035851. Epub 2016/09/02. .

  127. Abdelsamed HA, Moustaki A, Fan Y, Dogra P, Ghoneim HE, Zebley CC, Triplett BM, Sekaly RP, Youngblood B. Human memory CD8 T-cell effector potential is epigenetically preserved during in vivo homeostasis. J Exp Med. 2017 Jun 5;214(6):1593-606. PubMed PMID: 28490440. PMCID: PMC5461005. Epub 2017/05/12. .

  128. Ko M, Bandukwala HS, An J, Lamperti ED, Thompson EC, Hastie R, Tsangaratou A, Rajewsky K, Koralov SB, Rao A. Teneleven-translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc Natl Acad Sci U S A. 2011 Aug 30;108(35):14566-71. PubMed PMID: 21873190. PM-CID: PMC3167529. Epub 2011/08/30. .

  129. Challen GA, Sun D, Jeong M, Luo M, Jelinek J, Berg JS, Bock C, Vasanthakumar A, Gu H, Xi Y, Liang S, Lu Y, Darlington GJ, Meissner A, Issa JP, Godley LA, Li W, Goodell MA. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet. 2011 Dec 4;44(1):23-31. PubMed PMID: 22138693. PMCID: PMC3637952. Epub 2011/12/06. .

  130. Zhang X, Su J, Jeong M, Ko M, Huang Y, Park HJ, Guzman A, Lei Y, Huang YH, Rao A, Li W, Goodell MA. DNMT3A and TET2 compete and cooperate to repress lineage-specific transcription factors in hemato-poietic stem cells. Nat Genet. 2016 Sep;48(9):1014-23. PubMed PMID: 27428748. PMCID: PMC4957136. Epub 2016/07/19. .

  131. Lopez-Moyado IF, Tsagaratou A, Yuita H, Seo H, Delatte B, Heinz S, Benner C, Rao A. Paradoxical association of TET loss of function with genome-wide DNA hypomethylation. Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):16933-42. PubMed PMID: 31371502. Epub 2019/08/03. .

  132. Gu T, Lin X, Cullen SM, Luo M, Jeong M, Estecio M, Shen J, Hardikar S, Sun D, Su J, Rux D, Guzman A, Lee M, Qi LS, Chen JJ, Kyba M, Huang Y, Chen T, Li W, Goodell MA. DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells. Genome Biol. 2018 Jul 12;19(1):88. PubMed PMID: 30001199. PMCID: PMC6042404. Epub 2018/07/13. .

  133. Fraietta JA, Nobles CL, Sammons MA, Lundh S, Carty SA, Reich TJ, Cogdill AP, Morrissette JJD, DeNizio JE, Reddy S, Hwang Y, Gohil M, Kulikovskaya I, Nazimud- din F, Gupta M, Chen F, Everett JK, Alexander KA, Lin-Shiao E, Gee MH, Liu X, Young RM, Ambrose D, Wang Y, Xu J, Jordan MS, Marcucci KT, Levine BL, Garcia KC, Zhao Y, Kalos M, Porter DL, Kohli RM, Lacey SF, Berger SL, Bushman FD, June CH, Melenhorst JJ. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T-cells. Nature. 2018 Jun;558(7709):307-12. PubMed PMID: 29849141. PMCID: PMC6320248. Epub 2018/06/01. .

  134. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT, Liu LX, Jiang WQ, Liu J, Zhang JY, Wang B, Frye S, Zhang Y, Xu YH, Lei QY, Guan KL, Zhao SM, Xiong Y. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011 Jan 18;19(1):17-30. PubMed PMID: 21251613. PMCID: PMC3229304. Epub 2011/01/22. .

  135. Tyrakis PA, Palazon A, Macias D, Lee KL, Phan AT, Velica P, You J, Chia GS, Sim J, Doedens A, Abelanet A, Evans CE, Griffiths JR, Poellinger L, Goldrath AW, Johnson RS. S-2-hydroxyglutarate regulates CD8(+) T-lymphocyte fate. Nature. 2016 Dec 8;540(7632):236-41. PubMed PMID: 27798602. PMCID: PMC5149074. Epub 2016/11/01. .

  136. McLane LM, Abdel-Hakeem MS, Wherry EJ. CD8 T-cell exhaustion during chronic viral infection and cancer. Annu Rev Immunol. 2019 Apr 26;37:457-95. PubMed PMID: 30676822. Epub 2019/01/25. .

  137. Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J, Khan O, Drake AM, Chen Z, Sen DR, Kurachi M, Barnitz RA, Bartman C, Bengsch B, Huang AC, Schen kel JM, Vahedi G, Haining WN, Berger SL, Wherry EJ. Epigenetic stability of exhausted T-cells limits durability of reinvigoration by PD-1 blockade. Science. 2016 Dec 2;354(6316):1160-65. PubMed PMID: 27789795. PM-CID: PMC5484795. Epub 2016/10/30. .

  138. Sen DR, Kaminski J, Barnitz RA, Kurachi M, Gerdemann U, Yates KB, Tsao HW, Godec J, LaFleur MW, Brown FD, Tonnerre P, Chung RT, Tully DC, Allen TM, Frahm N, Lauer GM, Wherry EJ, Yosef N, Haining WN. The epigenetic landscape of T-cell exhaustion. Science. 2016 Dec 2;354(6316):1165-69. PubMed PMID: 27789799. PMCID: PMC5497589. Epub 2016/10/30. .

  139. Ghoneim HE, Fan Y, Moustaki A, Abdelsamed HA, Dash P, Dogra P, Carter R, Awad W, Neale G, Thomas PG, Youngblood B. De novo epigenetic programs inhibit PD-1 blockade-mediated T-cell rejuvenation. Cell. 2017 Jun 29;170(1):142-57 e19. PubMed PMID: 28648661. PM-CID: PMC5568784. Epub 2017/06/27. .

  140. Nie J, Wang C, Liu Y, Yang Q, Mei Q, Dong L, Li X, Liu J, Ku W, Zhang Y, Chen M, An X, Shi L, Brock MV, Bai J, Han W. Addition of low-dose decitabine to anti-PD-1 antibody camrelizumab in relapsed/refractory classical hodgkin lymphoma. J Clin Oncol. 2019 Jun 10;37(17):1479-89. PubMed PMID: 31039052. Epub 2019/05/01. .

REFERENZIERT VON
  1. Dutta Avik, Venkataganesh Harini, Love Paul E., Epigenetic regulation of T cell development, International Reviews of Immunology, 2021. Crossref

  2. Li Jiaqi, Li Lifang, Wang Yimeng, Huang Gan, Li Xia, Xie Zhiguo, Zhou Zhiguang, Insights Into the Role of DNA Methylation in Immune Cell Development and Autoimmune Disease, Frontiers in Cell and Developmental Biology, 9, 2021. Crossref

  3. Chen Heng‐Yi, Hsu Michael, Lio Chan‐Wang Jerry, Micro but mighty—Micronutrients in the epigenetic regulation of adaptive immune responses*, Immunological Reviews, 305, 1, 2022. Crossref

  4. Møller Sofie Hedlund, Hsueh Pei-Chun, Yu Yi-Ru, Zhang Lianjun, Ho Ping-Chih, Metabolic programs tailor T cell immunity in viral infection, cancer, and aging, Cell Metabolism, 34, 3, 2022. Crossref

  5. Li Peng, Han Mengwei, Zhao Xingyu, Ren Guanqun, Mei Si, Zhong Chao, Abnormal Epigenetic Regulations in the Immunocytes of Sjögren’s Syndrome Patients and Therapeutic Potentials, Cells, 11, 11, 2022. Crossref

  6. Romano Roberta, Cillo Francesca, Moracas Cristina, Pignata Laura, Nannola Chiara, Toriello Elisabetta, De Rosa Antonio, Cirillo Emilia, Coppola Emma, Giardino Giuliana, Brunetti-Pierri Nicola, Riccio Andrea, Pignata Claudio, Epigenetic Alterations in Inborn Errors of Immunity, Journal of Clinical Medicine, 11, 5, 2022. Crossref

  7. Zhao Tian, Lum Julian J., Methionine cycle-dependent regulation of T cells in cancer immunity, Frontiers in Oncology, 12, 2022. Crossref

  8. Bai Lu, Hao Xiaolei, Keith Julia, Feng Yongqiang, DNA Methylation in Regulatory T Cell Differentiation and Function: Challenges and Opportunities, Biomolecules, 12, 9, 2022. Crossref

Zukünftige Artikel

Function of steroid receptor coactivators (SRCs) in T cells and cancers: Implications for cancer immunotherapy Wencan Zhang, Xu Cao, Hongmin Wu, Xiancai Zhong, Yun Shi, Zuoming Sun Electroacupuncture Alleviates Ischemic Stroke by Activating the mTOR/SREBP1 Pathway Jiawang Lang, Jianchang Luo, Luodan Wang, Wenbin Xu, Jie Jia, Zhipeng Zhao, Boxu Lang KIAA1429 induces the m6A modification of LINC01106 to enhance the malignancy of lung adenocarcinoma cell via JAK/STAT3 pathway Di Xu, Ziming Wang, Fajiu Li Effect of p-estrogen receptor at serine on its function and breast growth Yuan Liang, Junhui Qin, Tiancheng Ma, Tong Yang, Zhenyu Ke, Ruian Wang Mechanistic Insights into Tanshinone IIA in the Amelioration of Post-Thyroidectomy Hypoparathyroidism Xiaoyu Qian, Lin Li, Liang Chen, Chao Shen, Jian Tang MiRNA let-7d-5p alleviates inflammatory responses by targeting Map3k1 and inactivating ERK/p38 MAPK signaling in microglia Fan Fang, Cheng Chen Role of Natural Killer Cells as Cell-Based Immunotherapy in Oral Tumor Eradication and Differentiation Both In Vivo and In Vitro Kawaljit Kaur, Anahid Jewett The Current and Future States of Natural Killer Cell-Based Immunotherapy in Hepatocellular Carcinoma Tu Nguyen, Po-Chun Chen, Janet Pham, Kawaljit Kaur, Steven Raman, Anahid Jewett, Jason Chiang Phillygenin alleviated arthritis through the inhibition of NLRP3 inflammasome and Ferroptosis by AMPK Jianghui Wang, Shufang Ni, Kai Zheng, Yan Zhao, peihong zhang, Hong Chang The value of systemic immune-inflammation index and T cell subsets in the severity and prognosis of sepsis Hao Zhou Efficacy and Nuances of Precision Molecular Engineering for Hodgkin's Disease to a Gene Therapeutic Approach Muhammad Imran Qadir, Bilal Ahmed, Nadir Hussain Serum interleukin 6 and ferritin levels are the independent risk factors for pneumonia in elderly patients Hao Yuan, Jing Tian, Lu Wen Exploration of diagnostic markers associated with inflammation in chronic kidney disease (CKD) based on WGCNA and machine learning Qianjia Wu, Yang Yang, Chongze Lin Clinical significance of serum CTRP3 level in the prediction of cardiac dysfunction and intestinal mucosal barrier dysfunction in patients with severe acute pancreatitis Qiang Shao, Lin Sun The protective effect and mechanism of mild hypothermia on pig lung injury after cardiopulmonary resuscitation Jinlin Ren, Fangfang Zhu, Dongdong Sang, Mulin Cong, Shujuan Jiang Exploring mechanism of Zilongjin in treating lung adenocarcinoma based on network pharmacology combined with experimental verification Kang Zhang, Xiaoqun Chen Gastric Cancer Immune Subtypes and Prognostic Modeling: Insights from Aging-Related Genes Analysis Jian Shen, Minzhe Li Effects of different doses of dexmedetomidine on the prevention of postoperative sleep disturbance and serum neurotransmitter level in patients under general anesthesia Huifei Lu, Fei He, Ying Huang, Zhongliang Wei Identification of key ubiquitination-related genes and their associated with immune infiltration in osteoarthritis based on mRNA-miRNA network Dalu Yuan, Hailiang Shen, Lina Bai, Menglin Li, Qiujie Ye Diagnostic and Prognostic value of peripheral neutrophil CD64 index in elderly patients with community-acquired pneumonia Yan Li, Jing Zhang, Suhang Wang, Jie Cao Identification of Metabolism-Related Prognostic Biomarkers and Immune Features of Head and Neck Squamous Cell Carcinoma Rongjin Zhou, Junguo Wang Downregulation of miR-503-5p promotes the development of pancreatic cancer via targeting cyclin E2 Fei Li, Ying-pei Ling, Pan Wang, Shi-cheng Gu, Hao Jiang, Jie Zhu
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain