Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Critical Reviews™ in Immunology
Impact-faktor: 1.352 5-jähriger Impact-Faktor: 3.347 SJR: 0.657 SNIP: 0.55 CiteScore™: 2.19

ISSN Druckformat: 1040-8401
ISSN Online: 2162-6472

Volumen 39, 2019 Volumen 38, 2018 Volumen 37, 2017 Volumen 36, 2016 Volumen 35, 2015 Volumen 34, 2014 Volumen 33, 2013 Volumen 32, 2012 Volumen 31, 2011 Volumen 30, 2010 Volumen 29, 2009 Volumen 28, 2008 Volumen 27, 2007 Volumen 26, 2006 Volumen 25, 2005 Volumen 24, 2004 Volumen 23, 2003 Volumen 22, 2002 Volumen 21, 2001 Volumen 20, 2000 Volumen 19, 1999 Volumen 18, 1998 Volumen 17, 1997 Volumen 16, 1996 Volumen 15, 1995 Volumen 14, 1994

Critical Reviews™ in Immunology

DOI: 10.1615/CritRevImmunol.v27.i3.40
pages 233-245

Rapid Clearance of Bacteria and Their Toxins: Development of Therapeutic Proteins

Meghan Kunkel
Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Momchilo Vuyisich
Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Gnana Gnanakaran
Theory Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
George E. Bruening
Plant Pathology, UC Davis, Davis, CA 95616, USA
Abhaya M. Dandekar
Plant Sciences, UC Davis, Davis, CA 95616, USA
Edwin Civerolo
San Joaquin Valley Agricultural Sciences Center, USDA-ARS, Parlier, Parlier, CA 93648, USA
John J. Marchalonis
Department of Immunobiology, University of Arizona College of Medicine P.O. Box 24-5049 Tucson, AZ 85724
Goutam Gupta
Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA


The emergence of pathogens and toxins with resistance against conventional drugs, vaccines, and host defense peptides and proteins warrants novel countermeasures that can efficiently capture and rapidly clear them. This article examines the utility of chimeric proteins with capture and clearance domains as a novel countermeasure against pathogens and their toxins. The capture and clearance domains are chosen from the large repertoire of host defense peptides and proteins. Although individual capture and clearance domains are rendered ineffective by pathogenic resistance mechanisms, chimeric scaffolds can be designed to retain their antimicrobial activity, even in the face of pathogenic resistance. Here, initial studies on the design of chimeric proteins targeted against (1) intact bacteria such as Xylella fastidiosa (plant pathogens), Salmonella spp. (food-borne pathogens), and Staphylococcus aureus (blood-borne pathogens); and (2) lethal toxins from Bacillus anthracis are described.

Articles with similar content:

The Global Problem of Antibiotic Resistance
Critical Reviews™ in Immunology, Vol.30, 2010, issue 1
Thomas D. Gootz
Microparticles and Nanoparticles as Delivery Systems for DNA Vaccines
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.20, 2003, issue 2&3
Zhengrong Cui, Russell J. Mumper
Antigen Delivery to Plasmacytoid Dendritic Cells -Induction of Tolerance and Immunity
Critical Reviews™ in Immunology, Vol.32, 2012, issue 6
Jakob Loschko , Anne Krug
Novel Strategies Using DNA for the Induction of Mucosal Immunity
Critical Reviews™ in Immunology, Vol.19, 1999, issue 4
Heather L. Davis, Michael J. McCluskie
Algal-Produced Immunotoxins
Forum on Immunopathological Diseases and Therapeutics, Vol.4, 2013, issue 3-4
Jonathan L. Torres, Amy T. Hoang, Miller Tran, Michael P. Mayfield, James S. Hyun, Stephen P. Mayfield