Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Critical Reviews™ in Therapeutic Drug Carrier Systems
Impact-faktor: 2.9 5-jähriger Impact-Faktor: 3.72 SJR: 0.736 SNIP: 0.818 CiteScore™: 4.6

ISSN Druckformat: 0743-4863
ISSN Online: 2162-660X

Volumes:
Volumen 37, 2020 Volumen 36, 2019 Volumen 35, 2018 Volumen 34, 2017 Volumen 33, 2016 Volumen 32, 2015 Volumen 31, 2014 Volumen 30, 2013 Volumen 29, 2012 Volumen 28, 2011 Volumen 27, 2010 Volumen 26, 2009 Volumen 25, 2008 Volumen 24, 2007 Volumen 23, 2006 Volumen 22, 2005 Volumen 21, 2004 Volumen 20, 2003 Volumen 19, 2002 Volumen 18, 2001 Volumen 17, 2000 Volumen 16, 1999 Volumen 15, 1998 Volumen 14, 1997 Volumen 13, 1996 Volumen 12, 1995

Critical Reviews™ in Therapeutic Drug Carrier Systems

DOI: 10.1615/CritRevTherDrugCarrierSyst.v29.i3.10
pages 183-218

Pharmaceutical Cocrystals: A Novel Approach for Oral Bioavailability Enhancement of Drugs

Renu Chadha
University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, INDIA
Anupam Saini
University Institute of Pharmaceutical Sciences, Panjab University
Poonam Arora
University Institute of Pharmaceutical Sciences, Panjab University
Swati Bhandari
University Institute of Pharmaceutical Sciences, Panjab University

ABSTRAKT

Solid dosage forms are by far the preferred drug delivery systems. However, these often face the problem of poor and erratic bioavailability during the drug development process. Numerous formulation strategies for drug delivery are currently under development, among which the solid forms such as polymorphs, solvates, salts, and cocrystals have been considered to be the most important for improving dissolution rate and bioavailability. Cocrystallization is a fairly new approach in pharmaceutical industry that can improve the solubility and, consequently, the bioactivity of the active pharmaceutical ingredient (API) without compromising its structural integrity. Pharmaceutical cocrystals have found their place in drug delivery, primarily due to their ability to produce alternative, viable solid forms when a more standard approach of salt and polymorph formation fails to deliver the desired objectives. Over the past few years, a number of papers have been published focusing on a broad range of subjects, from traditional crystal engineering to structure-property relationships of cocrystals. The present review, however, illustrates how the cocrystalline forms of APIs have improved their in vitro dissolution rate and in vivo bioavailability, often correlating well with their improved solubility as well.


Articles with similar content:

Bacteria and pH-Sensitive Polysaccharide-Polymer Films for Colon Targeted Delivery
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.28, 2011, issue 5
Moji Christianah Adeyeye, Fredrick Esseku
Advances in Buccal Drug Delivery
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.22, 2005, issue 3
Raj Birudaraj, Bhaskara R. Jasti, Xiaoling Li, Ravichandran Mahalingam
Sublingual Drug Delivery
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.25, 2008, issue 5
Bhaskara R. Jasti, Xiaoling Li, Tarun Goswami
Oral Absorption Promoters: Opportunities, Issues, and Challenges
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.32, 2015, issue 5
Sushilkumar Patil, Girish Kore, Atul Kolate, Chetan Yewale, Ambikanandan Misra
Pulmonary Drug Delivery: Physiologic and Mechanistic Aspects
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.14, 1997, issue 4
Jianwei Yu, Yie W. Chien