Abo Bibliothek: Guest
Critical Reviews™ in Therapeutic Drug Carrier Systems

Erscheint 6 Ausgaben pro Jahr

ISSN Druckformat: 0743-4863

ISSN Online: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Nanodiamonds: A Versatile Drug-Delivery System in the Recent Therapeutics Scenario

Volumen 38, Ausgabe 4, 2021, pp. 39-78
DOI: 10.1615/CritRevTherDrugCarrierSyst.2021035845
Get accessDownload

ABSTRAKT

Nanodiamonds (ND) belong to the nano-carbon family, which involves several synthesis, post-synthesis methods, and other modifications for ND preparation. NDs have played vital role both inside and outside of medicine in recent years. The study of NDs has stated in early 1960s, NDs are smaller particles with a size of about 4-5 nm with confined size distribution, large-scale synthesis at lower costs relying on the carbon explosives ignition, apparent surface functional design along with bio-conjugation and extreme biocompatibility. It has been predicted that the ND's magnetic characteristics will contribute to the up-growth of various therapeutic promoters for delivery vehicles, diagnostic probes, gene therapy, tissue scaffolds, anti-bacterial and anti-viral treatments, and devices like nano-robots. Furthermore, the wide applications of biotechnology have displayed the potential usage of NDs in certain bioanalytical needs like fluorescent bio labeling through fluorescent and protein purification of proteins. In this current review, the determination of ND's design, property, classes, constancy, organization, surface modification, biocompatibility, and its applications in the biomedical field have penned. The usage of ND as anti-neoplastic agents and in other health related formulations have displayed exceptional results for future growth. Additionally, NDs provide other functionalities such as production of biodegradable surgical devices of bone, the assassination of drug resistant microbes and viruses, tissue engineering scaffolds, and aids in the delivery of genetic matter into the nucleus of cells.

REFERENZEN
  1. Greiner NR, Phillips DS, Johnson JD, Volk F. Diamonds in detonation soot. Nature 1988;333:440-2.

  2. Vereschagin AL, Sakovich, GV, Komarov VF, Petrov EA. Properties of ultrafine diamond clusters from detonation synthesis. Diam Relat Mater. 1994;3:160-2.

  3. Kuznetsov VL, Chuvilin, AL, Butenko YV, Malkov IY, Titov VM. Onion like carbon from ultadispersed diamond. Chem Phys Lett. 1994;209:72.

  4. Liu Y, Gu Z, Margrave JL, Khabashesku VN. Functionalization of nanoscale diamond powder: Fluro-, alkyl-, amino-, and amino acid-nanodiamond derivatives. Chem Mater. 2004;16:3924-30.

  5. Shenderova OA, Zhirnov VV, Brenner DW. Carbon nanostructures. Crit Rev Solid State Mat Sci. 2002;27:227-356.

  6. Dolmatov VY. Detonation synthesis ultradisperse diamonds: Properties and applications Russ Chem Rev. 2001;70:607-26.

  7. Ji SF, Jiang TL, Xu K, Li SB. FTIR study of the absorption of water on ultradispersed diamond powder surface. Appl Surf Sci. 1998;133:231-8.

  8. Kuznetsov VL, Aleksandrov MN, Zagoruiko IV, Chuvilin AL, Moroz EM, Kolomichuk VN, Likholobov VA, Brylyakov PM, Sakovitch GV. Study of ultra dispersed diamond powders obtained using explosion energy. Carbon. 1991;29:665-6.

  9. Kruger A, Ozawa M, Kataoka F, Fujino T, Suzuki Y, Aleksenskii AE, Vul AY, Osawa E. Unusually tight aggregation in detonation nanodiamond: Identification and disintegration. Carbon. 2005;43:1722-30.

  10. Tapraeva FM, Pushkin AN, Kulakova II, Rudenko AP, Elagin AA, Tikhomirov CV. Funtional coating of the diamond surface under various conditions of modifications by gas. Zhurnal Fizicheskoi Khimii. 1990;64:2445-51.

  11. Baidakova M, Vul AA. New prospects and frontiers of nanodiamond clusters. J Phys D Appl Phys. 2007;40:6300-11.

  12. Freitas RJ. Nanomedicine volume IIA: Biocompatibility. Georgetown, TX: Routledge; 2003.

  13. Bianco A. Carbon nanotubes for the delivery of therapeutic molecules. Expert Opin Drug Deliv. 2004;1(1):57-65.

  14. Bianco A, Hoebeke J, Kostarelos K, Prato M, Partidos CD. Carbon nanotubes: On the road to delivery. Curr Drug Deliv. 2005;2:253.

  15. Prato M, Kostarelos K, Bianco A. Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res. 2008;41:60.

  16. Gulka M, Salehi H, Varga B, Middendorp E, Pall O, Raabova H, Cloitre T, Cuisinier FJ, Cigler P, Nesladek M, Gergely C. Simultaneous label-free live imaging of cell nucleus and luminescent nano-diamonds. Sci Rep. 2020;10(1):1-9.

  17. Gonsalves K, Halberstadt C, Laurencin CT, Nair L, editors. Biomedical nanostructures. Hoboken, NJ: Wiley-Interscience; 2007.

  18. Shenderova O. Detonation nanodiamonds: Science and Applications. San Diego: CRC Press; 2014.

  19. Labhasetwar V, Leslie-Pelecky DL, editors. Biomedical applications of nanotechnology. Hoboken, NJ: Wiley-Interscience; 2007.

  20. Salata O. Applications of nanoparticles in biology and medicine. J Nanobiotechnol. 2004;2:3.

  21. Urban GA, editor. BioMEMS. Dordrecht, The Netherlands: Springer; 2006.

  22. Bera M, Gupta P, Maji PK. Structural/load-bearing characteristics of polymer-carbon composites. In: Rahaman M, Khastgir D, Aldalbahi A, editors. Carbon-containing polymer composites. springer series on polymer and composite materials. Singapore: Springer; 2019. p. 457-502.

  23. Merkoci A. Electrochemical biosensing with nanoparticles. FEBS J. 2007;274:310.

  24. Shoseyov O, Levy I, editors, NanoBioTechnology: Bioinspired devices and materials of the future. Totowa, NJ: Humana Press; 2008.

  25. Sattler KD. Carbon nanomaterials sourcebook: Graphene, fullerenes, nanotubes, and nanodiamonds. Volume I. San Diego: CRC Press; 2016.

  26. Barnard AS, Russo SP, Snook IK. Structural relaxation and relative stability of nanodiamond mor-phologies. Diam Relat Mater. 2003;12:1867-72.

  27. Barnard AS, Russo SP, Snook IK. Coexistence of bucky diamond with nanodiamond and fullerence carbon phases. Phys Rev B. 2003;68:073406.

  28. Barnard AS. Stability of nanodiamond. In: Shenderova OA, Gruen DM, editors. Ultrananocrystalline diamond: Synthesis, properties and applications. New York: William Andrew Publishing; 2006. p. 117-54.

  29. Yu Y, Nishikawa M, Liu M, Tei T, Kaul S, Wadhawa R, Zhang M, Takahashi J, Miyako E. Self-assembled nanodiamond supraparticles for anticancer chemotherapy. Nanoscale. 2018; 10(19):8969-78.

  30. Fu CC, Lee HY, Chen K, Lim TS, Wu HY, Lin PK, Wei PK, Tsao PH, Chang HC, Fann W. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci U S A. 2007;104(3):727-32.

  31. Sonnefraud Y, Cuche A, Faklaris O, Boudou JP, Sauvage T, Roch JF, Treussart F, Huant S. Diamond nanocrystal hosting single nitrogen-vacancy color centers sorted by photon-correlation near-field microscopy. Opt Lett. 2008;33:611-3.

  32. Danilenko VV. Assessment of the influence of particle size and degree of cohesion of detonation nano-diamonds on their thermal stability. J Superhard Mat. 2009;4:218-25.

  33. Huang H, Pierstorff E, Osawa E, Ho D. Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett. 2007;7:3305-14.

  34. Huang LC, Chang HC. Adsorption and immobilization of cytochrome C on nanodiamonds. Langmuir. 2004;20:5879-84.

  35. Kong X, Huang LC, Liau SC, Han CC, Chang HC. Polylysine-coated diamond nanocrystals for MALDI-TOF mass analysis of DNA oligonucleotides. Anal Chem. 2005;77:134273-7.

  36. Kong XL, Huang LC, Hsu CM, Chen WH, Han CC, Chang HC. High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis. Anal Chem. 2005;77(1):259-65.

  37. Grichko V, Grishko V, Shenderova O. Nanodiamond bullets and their biological targets. Nanobiotechnol. 2007;2:37-42.

  38. Puzyr AP, Baron AV, Purtov KV, Bortnikov EV, Skobelev NN, Moginaya OA, Bondar VS. Nanodiamonds with novel properties: A biological study. Diam Relat Mater. 2007;16:2124-8.

  39. Schwertfeger H, Fokin AA, Schreiner PR. Diamonds area chemist's best friend: Diamondoid chemistry beyond adamantine. Angew Chem Int Ed Engl. 2008;247:61022.

  40. Dahl JE, Liu SG, Carlson RMK. Isolation and structure of higher diamondoids, nanometer-sized diamond molecules. Science. 2003;299(5603):96-9.

  41. Puzyr AP, Purtov KV, Shenderova OA, Luo M, Brenner DW, Bondar S. The adsorption of aflatoxin B1 by detonation-synthesis nanodiamonds. Dokl Biochem. Biophys. 2007;417:299-301.

  42. Baidakova M, Vul AA. New prospects and frontiers of nanodiamond clusters. J Phys D: Appl Phys. 2007;40:6300-11.

  43. Carlson RMK, Dahl JEP, Liu SG, Gruen DM, Vul A, Shenderova OA, editors. Diamond molecules found in petroleum. In: Synthesis, properties, and applications of ultrananocrystallline diamond. Dordrecht, The Netherlands: Springer; 2005. p. 63-8.

  44. Vereschagin AL. Detonation nanodiamonds. Altai State Technical University, Barnaul, Russian Federation, 2001.

  45. Boudou JP, Curmi PA, Jelezko F. High yield fabrication of fluorescent nanodiamonds. Nanotechnology. 2009;20:235602.

  46. Davies G, Lawson SC, Collins AT, Mainwood A, Sharp SJ. Vacancy-related centers in diamond. Phys Rev B Condens Matter. 1992;46:13157-70.

  47. Gracio JJ, Fan QH, Madaleno JC. Diamond growth by chemical vapour deposition. J Phys D Appl Phys. 2010;43:374017.

  48. Philip J, Hess P, Feygelson T. Elastic, mechanical, and thermal properties of nanocrystalline diamond films. J Appl Phys. 2003;93:2164-71.

  49. Qin LC, Zhou D, Krauss AR, Gruen DM. TEM characterization of nanodiamond thin films. Nanostruct Mater. 1998;10:649-60.

  50. Butler JE, Sumant AV. The CVD of nanodiamond materials. Chem Vap Depos. 2008;14:145-60.

  51. Yavkin BV, Mamin GV, Gafurov MR, Orlinskii SB. Size-dependent concentration of N0 paramagnetic centres in HPHT nanodiamonds. Magnetic Resonance in Solids. 2015;17(1):1-9.

  52. Amans D, Chenus AC, Ledoux G, Dujardin C, Reynaud C, Sublemontier O, Masenelli-Varlot K, Guillois O. Nanodiamond synthesis by pulsed laser ablation in liquids. Diam Relat Mater. 2009;18(2-3):177-80.

  53. Gogotsi Y, Welz S, Ersoy DA, McNallan MJ. Conversion of silicon carbide to crystalline diamond-structured carbon at ambient pressure. Nature. 2001;411(6835):283-7.

  54. Karami P, Khasraghi PS, Hashemi M, Rabiei S, Shojaei A. Polymer/nanodiamond composites - A comprehensive review from synthesis and fabrication to properties and applications. Adv Colloid Interface Sci. 2019;269:122-51.

  55. Bajaj P, Akin D, Gupta A. Ultrananocrystalline diamond film as an optimal cell interface for biomedical applications. Biomed Microdevices. 2007;9(6):787-94.

  56. Kruger A, Liang Y, Jarre G, Stegk J. Surface functionalisation of detonation diamond suitable for biological applications. J Mater Chem. 2006;16(24):2322-8.

  57. Tsubota T, Tanii S, Ida S, Nagata M, Matsumoto Y. Chemical modification of diamond surface with various carboxylic acids by radical reaction in liquid phase. Diam Relat Mater. 2004;134(8):1093-7.

  58. Ida S, Tsubota T, Tanii S, Nagata M, Matsumoto Y. Chemical modification of the diamond surface using benzoyl peroxide and dicarboxylic acids. Langmuir. 2003;19(23):9693-8.

  59. Ando T, Nishitani-Gamo M, Rawles RE, Yamamoto K, Kamo M, Sato Y. Chemical modification of diamond surfaces using a chlorinated surface as an intermediate state. Diam Relat Mater. 1996;5(10):1136-42.

  60. Krueger A, Boedeker T. Deagglomeration and functionalisation of detonation nanodiamond with long alkyl chains. Diam Relat Mater. 2008;17(7-10):1367-70.

  61. Krueger A, Ozawa M, Jarre G, Liang Y, Stegk J, Lu L. Deagglomeration and functionalisation of detonation diamond. Physica Status Solidi A. 2007;204(9):2881-7.

  62. Krueger A, Stegk J, Liang Y, Lu L, Jarre G. Biotinylated nanodiamond: Simple and efficient function-alization of detonation diamond. Langmuir. 2008;24(8):4200-4.

  63. Adair JJ, Singh RK, inventor; University of Florida, assignee. Enhanced chemical vapor deposition of diamond and related materials. United States patent US 5861349. 1996 Jan 23.

  64. Kuznetsov VL, Chuvilin AL, Moroz EM, Kolomiichuk VN, Shaikhutdinov SK, Butenko YV. Effect of explosions on the structure of detonation soots: Ultradisperse diamond and onion carbon. Carbon 1994;32:873-82.

  65. Kulakova I. Surface chemistry of nanodiamonds. Phys Solid State. 2004;46(4):636-43.

  66. Matsumoto S, Matsui Y. Electron microscopic observation of diamond particles grown from the vapour phase. J Mater Sci. 1983;18:1785-91.

  67. Barnard AS, Russo SP, Snook IK. Ab initio modelling of the stability of nanocrystalline diamond morphologies. Phil Mag Lett. 2010;83:39-45.

  68. Kern G, Hafner J. Ab-initio calculations of the atomic and electronic-structure of clean and hydrogenated diamond (110) surfaces. Phys Rev B. 1997;56:4203-10.

  69. Chang YK, Hsieh HH, Pong W, Tsai MH, Chien FZ, Tseng PK, Chen LC, Wang T, Chen Y, Bhusari KHDM, Yan JR, Lin ST. Quantum confinement effect in diamond nanocrystals studied by X-ray-absorption spectroscopy. Phys Rev Lett. 1999;82:5377-80.

  70. Tang YH, Zhou XT, Hu YF, Lee CS, Lee ST, Sham TK. A soft X-ray absorption study of nanodiamond films prepared by hot-filament chemical vapor deposition. Chem Phys Lett. 2003;372:320-4.

  71. Raty JY, Galli G, Bostedt C, van Buuren TW, Terminello LJ. Quantum confinement and fullerene like surface reconstructions in nanodiamonds. Phys Rev Lett. 2003;90:037401.

  72. Runge E, Gross EKU. Density-functional theory for time-dependent systems. Phys Rev Lett. 1984;52:997-1000.

  73. Williamson AJ, Grossman JC, Hood RQ, Puzder A, Galli G. Quantum monte carlo calculations of nanostructure optical gaps: Application to silicon quantum dots. Phys Rev Lett. 2002;89:196803.

  74. Schrand AM, Huang H, Carlson C, Schlager JJ, Omacr E, Hussain SM, Dai L. Are diamond nanoparticles cytotoxic? J Phys Chem. 2007;111:2-7.

  75. Dolmatov, VY. Application of detonation nanodiamond. In: Shenderova O, Gruen D, editors, Ultrananocrystalline diamond: Synthesis, properties, and applications. Norwich, NY: William Andrew Publishing; 2006. p. 513.

  76. Skebo JE, Grabinski CM, Schrand AM, Schlager JJ, Hussain SM. Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system. Int J Toxicol. 2007;26:135-41.

  77. Rabeau JR, Stacey A, Rabeau A, Prawer S, Jelezko F, Mirza I, Wrachtrup J. Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals. Nano Lett. 2007;7(11):3433-7.

  78. Treussart F, Jacques V, Wu E, Gacoln T, Grangier P, Roch JF. Photoluminescence of single colour defects in 50 nm diamond nanocrystals. Physica B Condens Matter. 2006;37:6926-9.

  79. Faklaris O, Sonnefraud Y, Cuche A, Sauvage T, Joshi V, Boudou JP, Curmi PA, Roch JF, Huant S, Treussart F. Diamond nanoparticles as photoluminescent nanoprobes. Annales De Physique. 2007;32:155-8.

  80. Cheng CY, Perevedentseva E, Tu JS, Chung PH, Cheng CL, Liu KK, Chao JI, Chen PH, Chang CC. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling. Appl Phys Lett. 2007;90:163903.

  81. Perevedentseva E, Cheng CY, Chung PH, Tu JS, Hsieh YH, Cheng CL. The interaction of the protein lysozyme with bacteria E coli observed using nanodiamond labelling. Nanotechnology. 2007;18:315102.

  82. Lim YT, Kim S, Nakayama A, Stott NE, Bawendi MG, Frangioni JV. Selection of quantum dot wave-lengths for biomedical assays and imaging. Mol Imaging. 2003;2:50-64.

  83. Gaebel T, Popa I, Gruber A, Domhan M, Jelezko F, Wrachtrup J. Stable single-photon source in the near infrared. New J Phys. 2004;6:98.

  84. Xing Y, Xiong W, Zhu L, Osawa E, Hussin S, Dai L. DNA damage in embryonic stem cells caused by nanodiamonds. ACS Nano. 2011;5:2376-84.

  85. Marcon L, Riquet F, Vicogne D, Szunerits S, Bodart JF, Boukherroub R. Cellular and in vivo toxicity of functionalized nanodiamond in Xenopus embryos. J Mater Chem. 2010;20:8064-9.

  86. Liu KK, Wang CC, Cheng CL, Chao JI. Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells. Biomaterials. 2009;30:4249-59.

  87. Zhu L, Chang DW, Dai L, Hong Y. DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells Nano Lett. 2007;7:3592-7.

  88. Kittler S, Greulich C, Gebauer JS, Diendorf J, Treuel L, Ruiz L, Gonzalez-Calbet JM, Vallet-Regi M, Zellner R, Koller M, Epple M. The influence of proteins on the dispersability and cell-biological activity of silver nanoparticles. J Mater Chem. 2010;20:512-8.

  89. Casey A, Davoren M, Herzog E, Lyng FM, Byrne HJ, Chambers G. Probing the interaction of single walled carbon nanotubes within cell culture medium as a precursor to toxicity testing. Carbon. 2007;45(1):34-40.

  90. Drescher D, Orts-Gil G, Laube G, Natte K, Veh RW, Osterle W, Kneipp J. Toxicity of amorphous silica nanoparticles on eukaryotic cell model is determined by particle agglomeration and serum protein adsorption effects. Anal Bio Anal Chem. 2011;400:1367-73.

  91. Guo L, Von Dem Bussche A, Buechner M, Yan A, Kane AB, Hurt RH. Adsorption of essential micro-nutrients by carbon nanotubes and the implications for nanotoxicity testing. Small. 2008;4(6):721-7.

  92. Zhang Q, Mochalin VN, Neitzel I, Knoke IY, Han J, Klug CA, Zhou JG, Lelkes PI, Gogotsi Y. Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials. 2011; 32:87-94.

  93. Yuan Y, Wang X, Jia G, Liu JH, Wang T, Gu Y, Yang ST, Zhen S, Wang H, Liu Y. Pulmonary toxicity and translocation of nanodiamonds in mice. Diam Relat Mater. 2010;19(4):291-9.

  94. Setyawati MI, Mochalin VN, Leong DT. Tuning endothelial permeability with functionalized nano-diamonds. ACS Nano. 2015;10:1170-81.

  95. Turcheniuk K, Mochalin V. Adsorption behavior and reduction of copper (ii)acetate on the surface of detonation nanodiamond with well defined surface chemistry. Carbon. 2016;10:998-105.

  96. Chen M, Pierstorff E D, Lam R, Li S Y, Huang H, Osawa E, Ho D. Nanodiamond-mediated delivery of water-insoluble therapeutics. ACS Nano. 2009;3:2016-22.

  97. Chow EK, Zhang XQ, Chen M, Lam R, Robinson E, Huang H, Schaffer D, Osawa E, Goga A, Ho D. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci Transl Med. 2011;3:73ra21.

  98. Lim DG, Jung JH, Ko HW, Kang E, Jeong SH. Paclitaxel-nanodiamond nanocomplexes enhance aqueous dispersibility and drug retention in cells. ACS Appl Mater Interfaces. 2016;82: 3558-67.

  99. Chu H, Chen H, Tseng S, Hsu M, Ho L, Chou F, Li M, Chang Y, Chen P, Tsai L. Development of a growth-hormone-conjugated nanodiamond complex for cancer therapy. Chem Med Chem. 2014;9:1023-9.

  100. Zhao J, Lai H, Lu H, Barner-Kowollik C, Stenzel MH, Xiao P. Fructose-coated nanodiamonds: Promising platforms for treatment of human breast cancer. Biomacromolecules. 2016;17(9):2946-55.

  101. Lin Y, Raj E, Liao W, Lin J, Liu K, Chen T, Cheng H, Wang C, Li L, Chen C. Co-delivery of paclitaxel and cetuximab by nanodiamond enhances mitotic catastrophe and tumor inhibition. Sci Rep. 2017;7:9814.

  102. Zhao L, Nakae Y, Qin H, Ito T, Kimura T, Kojima H, Chan L, Komatsu N. Polyglycerol-functionalized nanodiamond as a platform for gene delivery: Derivatization, characterization, and hybridization with DNA. Beilstein J Org Chem. 2014;10:707-13.

  103. Li Y, Tong Y, Cao R, Tian Z, Yang B, Yang P. In vivo enhancement of anticancer therapy using bare or chemotherapeutic drug-bearing nanodiamond particles. Int J Nanomed. 2014;9:1065-82.

  104. Sun TL, Wang B, Peng Y, Ni JM. Carboxylnanodiamond as intracellular transporters of anticancer drug podophyllotoxin. Yao Xue Xue Bao. 2013;48(1):149-54.

  105. Alhaddad A, Adam M, Botsoa J, Dantelle G, PerruchEs S, Gacoin T, Mansuy C, Lavielle S, Malvy C, Treussart F. Nanodiamond as a vector for siRNA delivery to Ewing sarcoma cells. Small. 2011;7(21):3087-95.

  106. Ghoneum M, Ghoneum A, Gimzewski J. Nanodiamond and nanoplatinum liquid, DPV576, activates human monocyte-derived dendritic cells in vitro. Anticancer Res. 2010;30(10):4075-9.

  107. Liu KK, Zheng WW, Wang CC, Chiu YC, Cheng CL, Lo YS, Chen C, Chao JI. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology. 2010;21(31):315106.

  108. Ryu TK, Baek SW, Lee GJ, Rhee CK, Choi SW. Targeted tumor therapy based on nanodiamonds decorated with doxorubicin and folic acid. Macromol Biosci. 2017;17(2).

  109. Medvedeva NN, Zhukov EL, Inzhevatkin EV, Bezzabotnov VE. Antitumor properties of modified detonation nanodiamonds and sorbed doxorubicin on the model of Ehrlich ascites carcinoma. Bull Exp Biol Med. 2016;160(3):372-5.

  110. Ryu TK, Kang RH, Jeong KY, Jun DR, Koh JM, Kim D, Bae SK, Choi SW. Bone-targeted delivery of nanodiamond-based drug carriers conjugated with alendronate for potential osteoporosis treatment. J Control Release. 2016;232:152-60.

  111. Moore L, Chow E, Osawa E, Bishop J, Ho D. Diamond-lipid hybrids enhance chemotherapeutic tolerance and mediate tumor regression. Adv Mat. 2013;25:3532-41.

  112. Wang X, Gu M, Toh T, Abdullah N, Chow E. Stimuli-responsive nanodiamond-based biosensor for enhanced metastatic tumor site detection. SLAS Technol. 2018;23:44-56.

  113. Hou W, Toh T, Abdullah L, Yvonne T, Lee K, Guenther I, Chow E. Nanodiamond-manganese dual mode MRI contrast agents for enhanced liver tumor detection. Nanomedicine. 2017;13:783-93.

  114. Lien Z, Hsu T, Liu K, Liao W, Hwang K, Chao J. Cancer cell labeling and tracking using fluorescent and magnetic nanodiamond. Biomaterials. 2012;33:6172-85.

  115. Zhang T, Cui H, Fang CY, Jo J, Yang X, Chang HC, Forrest ML. In vivo photoacoustic imaging of breast cancer tumor with HER2-targeted nanodiamonds. Proc SPIE Int Soc Opt Eng. 2013;8815:881504.

  116. Soo P, Kung C, Horng Y, Chang K, Lee J, Peng W. Detonation nanodiamonds for rapid detection of clinical isolates of mycobacterium tuberculosis complex in broth culture media. Anal Chem. 2012;84:7972-8.

  117. Soo P, Horng Y, Chen A, Yang S, Chang K, Lee J, Peng W. Validation of nanodiamond-extracted CFP- 10 antigen as a biomarker in clinical isolates of mycobacterium tuberculosis complex in broth culture media. Tuberculosis. 2015;95:620-4.

  118. Knapinska A, Tokmina-Roszyk D, Amar S, Tokmina-Roszyk M, Mochalin V, Gogotsi Y, Cosme P, Terentis A, Fields G. Solid-phase synthesis, characterization, and cellular activities of collagen-model nanodiamond-peptide conjugates. Biopolymers. 2015;104:186-95.

  119. Mytych J, Wnuk M, Rattan SI. Low doses of nanodiamonds and silica nanoparticles have beneficial hormetic effects in normal human skin fibroblasts in culture. Chemosphere. 2016;148:307-15.

  120. Pacelli S, Acosta F, Chakravarti A, Samanta S, Whitlow J, Modaresi S, Ahmed R, Rajasingh J, Paul A. Nanodiamond-based injectable hydrogel for sustained growth factor release:preparation, characterization and in vitro analysis. Acta Biomater. 2017;58:479-91.

  121. Pacelli S, Maloney R, Chakravarti AR, Whitlow J, Basu S, Modaresi S, Gehrke S, Paul A. Controlling adult stem cell behavior using nanodiamond-reinforced hydrogel:implication in bone regeneration therapy. Sci Rep. 2017;7(1):6577.

  122. Balaban AE, Neuman K, Sinnis P, Balaban RS. Robust fluorescent labelling of micropipettes for use in fluorescence microscopy: Application to the observation of a mosquito borne parasite infection. J Microsc. 2018;269(1):78-84.

  123. Ahn GY, Ryu TK, Choi YR, Park JR, Lee MJ, Choi SW. Fabrication and optimization of nanodiamonds-composited poly(s-caprolactone) fibrous matrices for potential regeneration of hard tissues. Biomater Res. 2018;22:16.

  124. Yassin M, Mustafa K, Xing Z, Sun Y, Fasmer K, Waag T, Krueger A, Steinmuller-Nethl D, Finne-Wistrand A, Leknes K. A copolymer scaffold functionalized with nanodiamond particles enhances osteogenic metabolic activity and bone regeneration. Macromol Biosci. 2017;17:1600427.

  125. Brady MA, Renzing A, Douglas TE, Liu Q, Wille S, Parizek M, Bacakova L, Kromka, A, Jarosova M, Godier G, Warnkel PH. Development of composite poly(lactide-co-glycolide)-nanodiamond scaffolds for bone cell growth. J Nanosci Nanotechnol. 2015;15(2):1060-9.

  126. Sun Y, Yang Q, Wang H. Synthesis and characterization of nanodiamond reinforced chitosan for bone tissue engineering. J Funct Biomater. 2016;7(3):E27.

  127. Parizek M, Douglas TE, Novotna K, Kromka A, Brady MA, Renzing A, Voss E, Jarosova M, Palatinus L, Tesarek P, Ryparova P, Lisa V, dos Santos AM, Warnke PH, Bacakova L. Nanofibrouspoly(lactideco-glycolide) membranes loaded with diamond nanoparticles as promising substrates for bone tissue engineering. Int J Nanomedicine. 2012;7:1931-51.

  128. Zhang Q, Mochalin VN, Neitzel I, Hazeli K, Niu J, Kontsos A, Zhou JG, Lelkes PI, Gogotsi Y. Mechanical properties and biomineralization of multifunctional nanodiamond-PLLA composites for bone tissue engineering. Biomaterials. 2012;33(20):5067-75.

  129. Hong C, Song D, Lee DK, Lin L, Pan HC, Lee D, Deng P, Liu Z, Hadaya D, Lee HL, Mohammad A, Zhang X, Lee M, Wang CY, Ho D. Reducing post treatment relapse in cleft lip palatal expansion using an injectable estrogen-nanodiamond hydrogel. Proc Natl Acad Sci U S A. 2017;114(35):E7218-25.

  130. Hu X, Li X, Yin M, Li P, Huang P, Wang L, Jiang Y, Wang H, Chen N, Fan C, Song H. Nanodiamonds mediate oral delivery of proteins for stem cell activation and intestinal remodeling in Drosophila. ACS Appl Mater Interfaces. 2017;9(22):18575-83.

  131. Lin HH, Lee HW, Lin RJ, Huang CW, Liao YC, Chen YT, Fang JM, Lee TC, Yu AL, Chang HC. Tracking and finding slow-proliferating/quiescent cancer stem cells with fluorescent nanodiamonds. Small. 2015;11(34):4394-402.

  132. Keremidarska M, Ganeva A, Mitev D, Hikov T, Presker R, Pramatarova L, Krasteva N. Comparative study of cytotoxicity of detonation nanodiamond particles with an osteosarcoma cell line and primary mesenchymal stem cells. Biotechnol Biotechnol Equip. 2014;28(4):733-9.

  133. Wang X, Low XC, Hou W, Abdullah LN, Toh TB, Abdul Rashid MM, Ho D, Chow EK. Epirubicin-adsorbed nanodiamonds kill chemoresistant hepatic cancer stem cells. ACS Nano. 2014;8(12):12151-66.

  134. Zhao L, Xu Y, Akasaka T, Abe S, Komatsu N, Watari F, Chen X. Polyglycerol-coated nanodia- mond as a macrophage-evading platform for selective drug delivery in cancer cells. Biomaterials. 2014;35:5393-406.

  135. Kim H, Man HB, Saha B, Kopacz AM, Lee OS, Schatz GC, Ho D, Liu WK. Multiscale simulation as a framework for the enhanced design of nanodiamond-polyethylenimine-based gene delivery. J Phys Chem Lett. 2012;3(24):3791-7.

  136. Lim DG, Rajasekaran N, Lee D, Kim NA, Jung HS, Hong S, Shin YK, Kang E, Jeong SH. Polyamidoamine-decorated nanodiamonds as a hybrid gene delivery vector and siRNA structural characterization at the charged interfaces. ACS Appl Mater Interfaces. 2017;9(37):31543-56.

  137. Alwani S, Kaur R, Michel D, Chitanda JM, Verrall RE, Karunakaran C, Badea I. Lysine-functionalized nanodiamonds as gene carriers: Development of stable colloidal dispersion for in vitro cellular uptake studies and siRNA delivery application. Int J Nanomedicine. 2016;11:687-702.

  138. Coonrod A, Li F, Horwitz M. On the mechanism of DNA transfection: Efficient gene transfer without viruses. Gene Ther. 1997;4:1313-21.

  139. Gorman CM, Merlino GT, Willingham MC, Pastan I, Howard BH. The Rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection. Proc Natl Acad Sci U S A. 1982;79:6777-81.

  140. Zabner J, Fasbender AJ, Moninger T, Poellinger KA, Welsh MJ. Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem. 1995;270:18997-9007.

  141. Huo S, Jin S, Ma X, Xue X, Yang K, Kumar A, Wang PC, Zhang J, Hu Z, Liang XJ. Ultra small gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry. ACS Nano. 2014;8:5852-62.

  142. Qiu L, Chen T, Ofsoy I, Yasun E, Wu C, Zhu G, You M, Han D, Jiang J, Yu R, Tan W. A cell-targeted, size-photo controllable, nuclear-uptake nano drug delivery system for drug-resistant cancer therapy. Nano Lett. 2014;15:457-63.

  143. Dam DHM, Lee JH, Sisco PN, Co DT, Zhang M, Wasielewski MR, Odom TW. Direct observation of nanoparticle-cancer cell nucleus interactions. ACS Nano. 2012;6:3318-26.

  144. Wang C, Ding C, Kong M, Dong A, Qian J, Jiang D, Shen Z. Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R over expression of lung adenocarcinoma A549 cells in vitro and in vivo. Biochem Biophys Res Commun. 2011;410(3):537-42.

  145. Martin R, Alvaro M, Herance JR, Garcia H. Fenton-treated functionalized diamond nanoparticles as gene delivery system. ACS Nano. 2010;4(1):65-74.

  146. Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012;30:499-511.

  147. Lim YH, Tiemann KM, Heo GS, Wagers PO, Rezenom YH, Zhang S, Zhang F, Youngs WJ, Hunstad DA, Wooley KL. Preparation and in vitro antimicrobial activity of silver-bearing degradable polymeric nanoparticles of poly phosphoester block-poly (L-lactide). ACS Nano. 2015;9:1995-2008.

  148. Wilson BA, Salyers AA, Whitt DD, Winkler ME. Bacterial pathogenesis: A molecular approach. 3rd ed. Washington, DC: American Society for Microbiology Press; 2011. p. 526.

  149. Lee YC, Lee RT. Carbohydrate-protein interactions: Basis of glycobiology. Acc Chem Res. 1995;28:321-7.

  150. Wehling J, Dringen R, Zare RN, Maas M, Rezwan K. Bactericidal activity of partially oxidized nano-diamonds. ACS Nano. 2014;8:6475-83.

  151. Beranova J, Seydlova G, Kozak H, Potocky S, Konopasek I, Kromka A. Antibacterial behavior of diamond nanoparticles against Escherichia coli. Physica Status Solidi B. 2012;249:2581-4.

  152. Zhang F, Song Q, Huang X, Li F, Wang K, Tang Y, Hou C, Shen HA. Novel high mechanical property PLGA composite matrix loaded with nanodiamond-phospholipid compound for bone tissue engineering. ACS Appl Mater Interfaces. 2016;8:1087-97.

  153. Guarino V, Cruz-Maya I, Reineck P, Abe H, Ohshima T, Fox K, Greentree AD, Gibson BC, Ambrosio L. Fluorescent nanodiamonds embedded in poly-s-caprolactone fibers as biomedical scaffolds. ACS Applied Nano Materials. 2020;3(11):10814-22.

  154. Jariwala DH, Patel D, Wairkar S. Surface functionalization of nanodiamonds for biomedical applications. Mater Sci Engineer C Mater Biol Appl. 2020;113:110996.

  155. Lee DK, Kim SV, Limansubroto AN, Yen A, Soundia A, Wang CY, Shi W, Hong C, Tetradis S, Kim Y, Park NH, Kang MK. Nanodiamond-gutta percha composite biomaterials for root canal therapy. ACS Nano. 2015;9(11):11490-501.

  156. Beranova J, Seydlova G, Kozak H, Potocky S, Konopasek I, Kromka A. Antibacterial behavior of diamond nanoparticles against Escherichia coli. Physica Status Solidi B. 2012;249:2581-84.

  157. Shimkunas RA, Robinson E, Lam R, Lu S, Xu X, Zhang XQ, Huang H, Osawa E, Ho D. Nanodiamond- insulin complexes as pH-dependent protein delivery vehicles. Biomaterials. 2009;30:5720-8.

  158. Roy U, Drozd V, Durygin A, Rodriguez J, Barber P, Atluri V, Liu X, Voss T, Saxena S, Nair M. Characterization of nanodiamond-based anti-HIV drug delivery to the brain. Sci Rep. 2018;8:1603.

  159. Krueger A, Waag T. 23rd International Conference on Diamond and Carbon Materials, Granada Conference and Exhibition Centre, Granada, Spain, September 3-6, 2012; p.O.1.

  160. Ye W, Han H, Li H, Jin Q, Wu Y, Chakrabortty S, Weil T, Ji J. Polymer coated nanodiamonds as gemcitabine prodrug with enzymatic sensitivity for pancreatic cancer treatment. Prog Nat Sci. 2020;30(5):711-7.

  161. Zhang XQ, Chen M, Lam R, Xu X, Osawa E, Ho D. Polymer-functionalized nanodiamond platforms as vehicles for gene delivery. ACS Nano. 2009;3:2609-16.

  162. Chen M, Zhang XQ, Man HB, Lam R, Chow EK, Ho D. Nanodiamond vectors functionalized with polyethylenimine for siRNA delivery. J Phys Chem Lett. 2010;1(21):3167-71.

  163. Wu TJ, Tzeng YK, Chang WW, Cheng CA, Kuo Y, Chien CH, Chang HC, Yu J. Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds. Nat Nanotechnol. 2013;8(9):682-9.

  164. Wu X, Bruschi M, Waag T, Schweeberg S, Tian Y, Meinhardt T, Stigler R, Larsson K, Funk M, Steinmuller-Nethl D. Functionalization of bone implants with nanodiamond particles and angiopoi- etin-1 to improve vascularization and bone regeneration. J Mater Chem. 2017;5:6629.

  165. Lam R, Chen M, Pierstoff E, Huang H, Osawa E, Ho D. Nanodiamond-embedded microfilm devices for localized chemotherapeutic elution. ACS Nano. 2008;2(10):2095-102.

  166. Lai H, Stenzel MH, Xiao P. Surface engineering and applications of nanodiamonds in cancer treatment and imaging. Int Mater Rev. 2020;65(4):189-25.

  167. Mahdavi M, Mahmoudi N, Rezaie Anaran F, Simchi A. Electrospinning of nanodiamond-modified polysaccharide nanofibers with physico-mechanical properties close to natural skins. Mar Drugs. 2016;14(7):E128.

  168. Huang TS, Tzeng Y, Liu YK, Chen YC, Walker KR, Guntupalli R, Liu C. Immobilization of antibodies and bacterial binding on nanodiamond and carbon nanotubes for biosensor applications. Diam Relat Mater. 2004:13:1098-102.

  169. Smirnov W, Kriele A, Yang N, Nebel CE. Aligned diamond nano-wires: Fabrication and characterisation for advanced applications in bio- and electrochemistry. Diam Relat Mater. 2010;19:186-9.

  170. Hens SC, Cunningham G, Tyler T, Moseenkov S, Kuznetsov V, Shenderova O. Nanodiamond bioconjugate probes and their collection by electrophoresis. Diam Relat Mater. 2008;17:1858-66.

  171. Morales-Zavala F, Casanova-Morales N, Gonzalez RB, Chandia-Cristi A, Estrada LD, Alvizu I, Waselowski V, Guzman F, Guerrero S, Oyarzun-Olave M, Rebolledo C. Functionalization of stable fluorescent nanodiamonds towards reliable detection of biomarkers for Alzheimer's disease. J Nanobiotechnology. 2018;16(1):60.

  172. Bergmann T, Burg JM, Lilholt M, Maeder U, Beer S, Salzig D, Ebrahimi M, Czermak P, Fiebich M. Fluorescent nanodiamonds as highly stable biomarker for endotoxin verification. In: Achilefu S, Raghavachari R, editors. Proceedings volume 8233, reporters, markers, dyes, nanoparticles, and molecular probes for biomedical applications IV. San Francisco, CA: SPIE BiOS; 2012.

  173. Fu CC, Lee HY, Chen K, Lim TS, Wu HY, Lin PK, Wei PK, Tsao PH, Chang HC, Fann W. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci U S A. 2007;104(3):727-32.

  174. Su LJ, Wu MS, Hui YY, Chang BM, Pan L, Hsu PC, Chen YT, Ho HN, Huang YH, Ling TY, Hsu HH. Fluorescent nanodiamonds enable quantitative tracking of human mesenchymal stem cells in miniature pigs. Sci Repl. 2017;7:45607.

  175. Posokhina E, Ronzhin N, Mogilnaya O, Baron A, Bondar V. A supramolecular indicator system for detecting urea based on the cellulose-nanodiamond composite material and urease. Int J Med Nano Res. 2019;6:029.

  176. Liu J, Cao Z, Lu Y. Functional nucleic acid sensors. Chem Rev. 2009;109(5):1948-98.

  177. Perevedentseva E, Lin YC, Cheng CL. A review of recent advances in nanodiamond-mediated drug delivery in cancer. Expert Opin Drug Deliv. 2010;1-14.

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain