Abo Bibliothek: Guest
Composites: Mechanics, Computations, Applications: An International Journal

Erscheint 4 Ausgaben pro Jahr

ISSN Druckformat: 2152-2057

ISSN Online: 2152-2073

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.2 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.3 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00004 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.08 SJR: 0.153 SNIP: 0.178 CiteScore™:: 1 H-Index: 12

Indexed in

MULTISCALE MODELING OF GAS FLOW THROUGH ORGANIC-RICH SHALE MATRIX

Volumen 7, Ausgabe 1, 2016, pp. 45-70
DOI: 10.1615/CompMechComputApplIntJ.v7.i1.40
Get accessGet access

ABSTRAKT

In this work, we study gas flow through shale matrix consisting of a microporous inorganic material and nanoporous organic material (kerogen). We apply a multiscale analysis to mass balance equations taking into account such processes as desorption of gas from nanopores in kerogen, diffusion, and filtration. As a result, we get a macroscopic initial boundary-value problem with effective coefficients. The effective coefficients are determined from the solution of a problem on representative elementary volume (REV or periodicity cell). They are influenced by the structure of shale matrix. The values of the effective coefficients depend on permeability and porosity, diffusivity of adsorbed and free gas, adsorption/desorption mechanism, and the concentration of kerogen. We study the free gas amount across the shale matrix as a function of coordinates and time. We conclude that due to the adsorbed-phase transport by the organic pore walls, the amount of gas in-place and gas production rate increase with the concentration of kerogen. We investigate both the Henry and Langmuir adsorption, and also the effect of nonlinearity caused by the dependence of matrix permeability on pressure.

REFERENZIERT VON
  1. Vlasov A. N., Khimenkov A. N., Volkov-Bogorodskiy D. B., Levin Yu. K., Natural Explosive Processes in the Permafrost Zone, Seismic Instruments, 54, 6, 2018. Crossref

  2. Rutter Ernest, Mecklenburgh Julian, Taylor Kevin, Geomechanical and petrophysical properties of mudrocks: introduction, Geological Society, London, Special Publications, 454, 1, 2017. Crossref

Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain