Abo Bibliothek: Guest

THREE-DIMENSIONAL FINITE-ELEMENT ANALYSIS OF THERMAL BEHAVIOR OF SUPERCAPACITORS

Volumen 11, Ausgabe 1, 2020, pp. 49-60
DOI: 10.1615/SpecialTopicsRevPorousMedia.2020029680
Get accessGet access

ABSTRAKT

A three-dimensional finite-element model for the thermal behavior of a supercapacitor was investigated numerically for various pertinent parameters. The parameters included the thermal conductivity of the insulating layer, total heat transfer coefficient, and heat generation rate. In this study, the supercapacitor temperature distributions were obtained under both steady and transient conditions. The results reported in this investigation illustrate that the maximum temperature occurs in the core of the supercapacitor and decreases toward the external surface. Furthermore, the core temperature was found to increase rapidly with an increase in the heat generation rate (charge/discharge current), which requires designing a cooling system that meets the safety and reliability of power systems. Thus, the results presented in this investigation may be used to determine the required cooling system for actual applications of super-capacitors.

REFERENZEN
  1. Chen, C.C. and Wan, Y.Y., Thermal Analysis of Lithium-Ion Batteries, J. Power Sources, vol. 140, pp. 111-124, 2005.

  2. Chen, Y. and Evans, J., Three-Dimensional Thermal Modeling of Lithium-Polymer Batteries under Galvanostatic Discharge and Dynamic Power Profile, J. Electrochem. Soc., vol. 141, pp. 2947-2955, 1994.

  3. Cottineau, T., Toupin, M., Delahaye, T., Brousse, T., and Belanger, D., Nanostructured Transition Metal Oxides for Aqueous Hybrid Electrochemical Supercapacitors, Appl. Phys. A, vol. 82, pp. 599-606, 2006.

  4. Dandeville, Y., Guillemet, P., Scudeller, Y., Crosnier, O., Athouel, L., and Brousse, T., Measuring Time-Dependent Heat Profiles of Aqueous Electrochemical Capacitors under Cycling, Thermochim. Acta, vol. 526, pp. 1-8, 2011.

  5. d'Entremont, A.L. and Pilon, L., First-Principles Thermal Modeling of Electric Double Layer Capacitors under Constant-Current Cycling, J. Power Sources, vol. 246, pp. 887-898, 2014.

  6. Gualous, H., Louahlia, H., Gallay, R., and Miraoui, A., Supercapacitor Thermal Modeling and Characterization in Transient State for Industrial Applications, IEEE Trans. Ind. Appl., vol. 45, pp. 1035-1044,2009.

  7. Gualous, H., Louahlia, H., and Gallay, R., Supercapacitor Characterization and Thermal Modeling with Reversible and Irreversible Heat Effect, IEEE Trans. Power Electron., vol. 26, pp. 3402-3409,2011.

  8. Guo, G. and Bo, L., Three-Dimensional Thermal Finite Element Modeling of Lithium-Ion Battery in Thermal Abuse Application, J. Power Sources, vol. 195, pp. 2393-2398, 2010.

  9. Hadim, H. and Vafai, K., Overview of Current Computational Studies of Heat Transfer in Porous Media and Their Applications-Forced Convection and Multiphase Transport, in Advances in Numerical Heat Transfer, New York: Taylor and Francis, pp. 291-330,2000.

  10. Hamid, G., Hasna, L., and Roland, G., Supercapacitor Thermal Modeling and Characterization in Transient State for Industrial Applications, IEEE Trans. Ind. Appl, vol. 45, pp. 1035-1044, 2009.

  11. Hijazi, A., Kreczanik, P., Bideaux, E., Venet, P., Clerc, G., and Loreto, M., Thermal Network Model of Supercapacitors Stack, IEEE Trans. Ind. Electron., vol. 59, pp. 979-987, 2012.

  12. Hu, H., Zhao, Z.B., Zhang, R., Bin, Y.Z., and Qiu, J.S., Polymer Casting of Ultralight Graphene Aerogels for the Production of Conductive Nanocomposites with Low Filling Content, J. Mater. Chem. A, vol. 2, pp. 3756-3760, 2014.

  13. Hung, Y.H., Teng, T.P., Teng, T.C., and Chen, J.H., Assessment of Heat Dissipation Performance for Nanofluid, Appl. Therm. Eng., vol. 32, pp. 132-140,2012.

  14. Kai, W., Li, Z., Ying-Hua, J., and Yu, F., The Preparation of Nickel Oxide based on Infinite Dilute Method and its Electrochemical Performance, Russian J. Electrochem., vol. 50, pp. 192-196, 2014a.

  15. Kai, W., Li, C., and Ji, B., Preparation of Electrode based on Plasma Modification and its Electrochemical Application, J. Mater. Eng. Perform., vol. 23, pp. 588-592, 2014b.

  16. Kai, W., Li, L., Zhang, T., and Liu, Z., Nitrogen-Doped Graphene for Supercapacitor with Long-Term Electrochemical Stability, Energy, vol. 70, pp. 612-617, 2014c.

  17. Lee, D.H., Kim, U.S., Shin, C.B., Lee, B.H., Kim, B.W., and Kim, Y.-H., Modeling of the Thermal Behavior of an Ultracapacior for a 42-V Automotive Electrical System, J. Power Sources, vol. 175, pp. 664-668, 2008.

  18. Lee, J., Yi, J., Kim, D., Shin, C., Min, K., Choi, J., and Lee, H., Modeling of the Electrical and Thermal Behaviors of an Ultraca- pacitor, Energies, vol. 7, pp. 8264-8278, 2014.

  19. Lystianingrum, V., Hredzak, B., Agelidis, V., and Djanali, V., On Estimating Instantaneous Temperature of a Supercapacitor String Using an Observer based on Experimentally Validated Lumped Thermal Model, IEEE Trans. Energy Convers., vol. 30, pp. 1438-1448, 2015.

  20. Mahon, P.J., Paul, G.L., and Keshishian, S.M., Measurement and Modeling of the High-Power Performance of Carbon-Based Supercapacitors, J. Power Sources, vol. 91, pp. 68-76, 2000.

  21. Monzer, S., Hamid, G., Joeri, V., and Hasan, C., Thermal Modeling and Heat Management of Supercapacitor Modules for Vehicle Applications, J. Power Sources, vol. 194, pp. 581-587, 2009.

  22. Munteshari, O., Lau, J., Ashby, D., Dunn, B., and Pilon, L., Effects of Constituent Materials on Heat Generation in Individual EDLC Electrodes, J. Electrochem. Soc, vol. 165, pp. A1547-A1557, 2018.

  23. Park, C. and Jaura, A.K., Dynamic Thermal Model of Li-Ion Battery for Predictive Behavior in Hybrid and Fuel Cell Vehicles, SAE Technical Paper 2003-01-2286, Warrendale, PA: SAE International, 2003.

  24. Sakka, M., Gualous, H., Mierlo, J., and Culcu, H., Thermal Modeling and Heat Management of Supercapacitor Modules for Vehicle Applications, J. Power Sourc., vol. 194, no. 2, pp. 581-587, 2009.

  25. Vafai, K., Handbook of Porous Media, 1st ed., New York: Marcel Dekker, Inc., 2000.

  26. Vafai, K., Handbook of Porous Media, 2nd ed., New York: Taylor and Francis, 2005.

  27. Vafai, K. and Hadim, H., Overview of Current Computational Studies of Heat Transfer in Porous Media and Their Applications-Natural Convection and Mixed Convection, Adv. Numer. Heat Transf., vol. 2, pp. 331-371, 2000.

  28. Vafai, K. and Tien, C.L., Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media, Int. J. Heat Mass Transf., vol. 24, pp. 195-203, 1981.

  29. Vafai, K. and Tien, C.L., Boundary and Inertia Effects on Convective Mass Transfer in Porous Media, Int. J. Heat Mass Transf., vol. 25, pp. 1183-1190, 1982.

  30. Wang, K., Li, C., and Ji, B., Preparation of Electrode based on Plasma Modification and Its Electrochemical Application, J. Mater. Eng. Perform., vol. 23, pp. 588-592, 2014a.

  31. Wang, K., Li, L., Zhang, T., and Liu, Z., Nitrogen-Doped Graphene for Supercapacitor with Long-Term Electrochemical Stability, Energy, vol. 70, pp. 612-617, 2014b.

  32. Wang, K., Li, L., Yin, H., Zhang, T., and Wan, W., Thermal Modeling Analysis of Spiral Wound Supercapacitor under Constant-Current Cycling, PLoS ONE, vol. 10, p. 1371, 2015.

  33. Wang, K., Zhang, L., Jin, Y.-H., and Fan, Y., The Preparation of Nickel Oxide based on Infinite Dilute Method and its Electro-chemical Performance, Russ. J. Electrochem., vol. 50, pp. 176-179, 2014c.

  34. Wang, R.Z., Yu, X., Ge, T.S., and Li, T.X., The Present and Future of Residential Refrigeration, Power Generation and Energy Storage, Appl. Therm. Eng., vol. 53, pp. 256-270, 2013.

  35. Wang, Y., Ronilaya, F., Chen, X., and Roskilly, A.P., Modeling and Simulation of a Distributed Power Generation System with Energy Storage to Meet Dynamic Household Electricity Demand, Appl. Therm. Eng., vol. 50, pp. 523-535, 2012.

  36. Zhang, L., Hu, X., Wang, Z., Sun, F., and Dorrell, D., Experimental Impedance Investigation of an Ultracapacitor at Different Conditions for Electric Vehicle Applications, J. Power Sources, vol. 287, pp. 129-138, 2015a.

  37. Zhang, L., Wang, Z., Hu, X., Sun, F., and Dorrell, D., A Comparative Study of Equivalent Circuit Models of Ultracapacitors for Electric Vehicles, J. Power Sources, vol. 274, pp. 899-906, 2015b.

  38. Zhang, L., Hu, X., Wang, Z., Sun, F., and Dorrell, D., A Review of Supercapacitor Modeling, Estimation, and Applications: A Control/Management Perspective, Renewable Sustainable Energy Rev., vol. 81, pp. 1868-1878, 2018.

  39. Zhang, L., Wang, Z., Sun, F., and Dorrell, D., Online Parameter Identification of Ultracapacitor Models Using the Extended Kalman Filter, Energies, vol. 7, pp. 3204-3217, 2014.

  40. Zhang, X., Wang, W., Lu, J., Hua, L., and Heng, J., Reversible Heat of Electric Double-Layer Capacitors during Galvanostatic Charging and Discharging Cycles, Thermochim. Acta, vol. 636, pp. 1-10, 2016.

  41. Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., et al., Progress of Electrochemical Capacitor Electrode Materials: A Review, Int. J. Hydrogen Energy, vol. 34, pp. 4889-4899, 2009.

  42. Zubieta, L. and Bonert, R., Characterization of Double-Layer Capacitors for Power Electronics Applications, IEEE Trans. Ind. Appl., vol. 36, pp. 199-205, 2000.

Zukünftige Artikel

HYDROMAGNETIC CASSON FLUID FLOW ACROSS AN INCLINED VERTICAL SURFACE IN POROUS CHANNEL WITH BUOYANCY AND THERMO-DIFFUSION EFFECTS Sowmiya C, Rushi Kumar B Effect of Helical Force on Thermal Convection of a Ferrofluid: A Weakly Non-linear Theory Jagathpally Sharathkumar Reddy, Kishan N, Shiva Kumar Reddy G, Ravi Ragoju STABILITY ANALYSIS OF A COUPLE-STRESS FLUID WITH VARIABLE GRAVITY IN A POROUS MEDIUM FOR DIFFERENT CONDUCTING BOUNDARIES Shalu Choudhary, Reeta Devi, Amit Mahajan, Sunil Sunil CREEPING FLOW ABOUT A TAINTED LIQUID DROP WITH A MICROPOLAR FLUID AND ALIGNED IN A POROUS MEDIUM FILLED WITH VISCOUS FLUID UTILISING SLIP PHANI KUMAR MEDURI, VIJAYA LAKSHMI KUNCHE Reviewing the Impact of Magnetic Prandtl Number and Magnetic Force Parameter on Convective Heat Transfer in Boundary Layers Hossam Nabwey, Muhammad Ashraf, Zia Ullah, Ahmed M. Rashad, Ali J. Chamkha Spectral Analysis for Entropy Generation and Irreversibility on NiZnFe_2O_4 – Engine Oil based Fluids RamReddy Chetteti, Sweta ., Pranitha Janapatla Study of global stability of rotating partially-ionized plasma saturating a porous medium Vishal Chandel, Sunil Kumar, Poonam Sharma Porous Medium Influenced Dissipative Hybrid Casson Nanofluid Flow over a Nonlinearly Stretching Sheet under Inclined Ohmic Lorentz Force Field A. R. Deepika, K. Govardhan, Hussain Basha, G Janardhana Reddy Effect of Motile Gyrotactic Microorganisms on Arterial Stenosis Sisko Nanofluid Flow Through Porous Medium : A Numerical Study Galal Moatimid, Mona Mohamed, Khaled Elagamy, Ahmed Gaber ELECTROTHERMOSOLUTAL CONVECTION IN NANOFLUID SATURATING POROUS MEDIUM Pushap Lata Sharma, Mohini Kapalta EFFECT OF VARIABLE GRAVITY ON THERMAL CONVECTION IN ROTATING JEFFREY NANOFLUID: DARCY-BRINKMAN MODEL Deepak Bains, Pushap Lata Sharma, Gian C. Rana Activation energy effect on MHD convective Maxwell nanofluid flow with Cattaneo-Christove heat flux over a porous stretching sheet JYOTHI NAGISETTY, VIJAYA KUMAR AVULA GOLLA Effects of different fins on Maxwell liquid under hybrid surveys of magnetic and porous material in presence of radiation factors Pooya Pasha, Payam Jalili, Bahram Jalili, Loghman Mostafa, Ahmed Mohammed Mahmood, Hussein Abdullah Abbas, D.D. Ganji
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain