Abo Bibliothek: Guest

HEATLINE VISUALIZATION OF BUOYANCY INDUCED FLOWS FOR NON-DARCY ANISOTROPIC POROUS MEDIA

Volumen 11, Ausgabe 4, 2020, pp. 359-379
DOI: 10.1615/SpecialTopicsRevPorousMedia.2020030946
Get accessGet access

ABSTRAKT

This report is a numerical analysis of steady-state natural convection inside a square cavity filled with anisotropic porous media. A generalized non-Darcy formulation was employed to model the flow through porous media. A finite volume method based in-house code was developed to analyze the flow and heat transport characteristics. The influence of anisotropic behavior of the porous matrix, parameters viz. Rayleigh number (Ra = 103-106), Darcy number (Da = 10-6-10-2), porosity (ε = 0.3, 0.6), and Prandtl number (Pr = 0.1,1, and 10) were studied. The anisotropic parameters investigated were permeability ratio: K* (0.1, 1, and 10), principal axes inclination: θ (0°-90°), Forchheimer constant ratio: F* (1,10, and 100) and thermal conductivity ratio: k* (0.1,1, and 10). The results are presented in terms of streamlines, isotherms, heatlines, and average Nusselt number. The heatlines are plotted to visualize the path of thermal transport. With the increase in Ra, Da, and Pr, the magnitude of vortex strength and heat function values were increased. At higher Ra and Da with the variation of θ, K*, and k*, the porous matrix significantly influenced the behavior of heatlines, thus altering thermal transport. The influence of F * was nullified for Da ≤ 10-4.

REFERENZEN
  1. Adekeye, T., Adegun, I.K., Okekunle, P.O., Hussein, A.K., Oyedepo, S.O., Adetiba, E., and Fayomi, O.S.I., Numerical Analysis of the Effects of Selected Geometrical Parameters and Fluid Properties on MHD Natural Convection Flow in an Inclined Elliptic Porous Enclosure with Localized Heating, Heat Transf. Asian Res., vol. 46, no. 3, pp. 261-293,2017. DOI: 10.1002/htj.21211.

  2. Ahmed, S.E., Hussein, A.K., El-Aziz, M.M.A., and Sivasankaran, S., Conjugate Natural Convection in an Inclined Square Porous Enclosure with Finite Wall Thickness and Partially Heated from Its Left Sidewall, Heat Transf. Res., vol. 47, no. 4, pp. 383-402, 2016. DOI: 10.1615/HeatTransRes.2016007964.

  3. Ahmed, S.E., Hussein, A.K., Mohammed, H.A., Adegun, I.K., Zhang, X., Kolsi, L., Hasanpour, A., and Sivasankaran, S., Viscous Dissipation and Radiation Effects on MHD Natural Convection in a Square Enclosure Filled with a Porous Medium, Nucl. Eng. Des., vol. 266, pp. 34-42,2014. DOI: 10.1016/j.nucengdes.2013.10.016.

  4. Ahmed, S.E. and Rashad, A.M., Natural Convection of Micropolar Nanofluids in a Rectangular Enclosure Saturated with Anisotropic Porous Media, J. Porous Media, vol. 19, no. 8, pp. 737-750,2016. DOI: 10.1615/JPorMedia.v19.i8.60.

  5. Aly, A.M. and Ahmed, S.E., An Incompressible Smoothed Particle Hydrodynamics Method for Natural/Mixed Convection in a Non-Darcy Anisotropic Porous Medium, Int. J. Heat Mass Transf., vol. 77, pp. 1155-1168, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.06.044.

  6. Basak, T., Anandalakshmi, R., and Kumar Singh, A., Heatline Analysis on Thermal Management with Conjugate Natural Convection in a Square Cavity, Chem. Eng. Sci, vol. 93, pp. 67-90,2013. DOI: 10.1016/j.ces.2013.01.033.

  7. Basak, T., Roy, S., Paul, T., and Pop, I., Natural Convection in a Square Cavity Filled with a Porous Medium: Effects of Various Thermal Boundary Conditions, Int. J. Heat Mass Transf, vol. 49, nos. 7-8, pp. 1430-1441, 2006. DOI: 10.1016/j. ij heatmasstransfer.2005.09.018.

  8. Biswal, P. and Basak, T., Sensitivity of Heat Function Boundary Conditions on Invariance of Bejan's Heatlines for Natural Convection in Enclosures with Various Wall Heatings, Int. J. Heat Mass Transf., vol. 89, pp. 1342-1368, 2015. DOI: 10.1016/j.ijheatmasstransfer.2015.05.030.

  9. Biswal, P., Nag, A., and Basak, T., Analysis of Thermal Management during Natural Convection within Porous Tilted Square Cavities via Heatline and Entropy Generation, Int. J. Mech. Sci, vols. 115-116, pp. 596-615, 2016. DOI: 10.1016/j.ijmecsci.2016.07.011.

  10. Chandra, P. and Satyamurty, V. V., Non-Darcian and Anisotropic Effects on Free Convection in a Porous Enclosure, Transp. Porous Media, vol. 90, no. 2, pp. 301-320,2011. DOI: 10.1007/s11242-011-9785-y.

  11. Costa, V.A.F., Bejan's Heatlines and Masslines for Convection Visualization and Analysis, Appl. Mech. Rev, vol. 59, nos. 1-6, pp. 126-145,2006. DOI: 10.1115/1.2177684.

  12. Das, D., Biswal, P., Roy, M., and Basak, T., Role of the Importance of 'Forchheimer Term' for Visualization of Natural Convection in Porous Enclosures of Various Shapes, Int. J. Heat Mass Transf., vol. 97, pp. 1044-1068, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.12.026.

  13. De Vahl Davis, G. and Jones, I.P., Natural Convection in a Square Cavity: A Comparison Exercise, Int. J. Numer. Methods Fluids, vol. 3, no. 3, pp. 227-248,1983. DOI: 10.1002/fld.1650030304.

  14. Deng, Q.H. and Tang, G.F., Numerical Visualization of Mass and Heat Transport for Conjugate Natural Convection/Heat Conduction by Streamline and Heatline, Int. J. Heat Mass Transf., vol. 45, pp. 2373-2385,2002. DOI: 10.1016/s0017-9310(01)00316-7.

  15. Ettefagh, J., Vafai, K., and Kim, S.J., Non-Darcian Effects in Open-Ended Cavities Filled with a Porous Medium, J. Heat Transf., vol. 113, no. 3, pp. 747-756,1991. DOI: 10.1115/1.2910627.

  16. Hooman, K., Gurgenci, H., and Dincer, I., Heatline and Energy-Flux-Vector Visualization of Natural Convection in a Porous Cavity Occupied by a Fluid with Temperature-Dependent Viscosity, J. Porous Media, vol. 12, no. 3, pp. 265-275,2009. DOI: 10.1615/JPorMedia.v12.i3.60.

  17. Hooman, K., Energy Flux Vectors as a New Tool for Convection Visualization, Int. J. Numer. Methods Heat Fluid Flow, vol. 20, no. 2, pp. 240-249,2010. DOI: 10.1108/09615531011016984.

  18. Hu, Y., Li, D., Shu, S., and Niu, X., A Multiple-Relaxation-Time Lattice Boltzmann Model for the Flow and Heat Transfer in a Hydrodynamically and Thermally Anisotropic Porous Medium, Int. J. Heat Mass Transf., vol. 104, pp. 544-558, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.08.008.

  19. Hussein, A.K. and Hussain, S.H., Natural Convection in a Square Enclosure Filled with a Saturated Porous Matrix under Different Discrete Heat Sources Locations, World Acad. Sci. Eng. Technol., vol. 78, pp. 1896-1902,2013.

  20. Jaya Krishna, D., Basak, T., and Das, S.K., Non-Darcy Buoyancy Driven Flows in a Fluid Saturated Porous Medium: The Use of Asymptotic Computational Fluid Dynamics (ACFD) Approach, Heat Mass Transf. Und Stoffuebertragung, vol. 44, no. 9, pp. 1117-1125,2008. DOI: 10.1007/s00231-007-0348-2.

  21. Kimura, S. andBejan, A., The "Heatline" Visualization of Convective Heat Transfer, J. Heat Transf., vol. 105, no. 4, pp. 916-919, 1983. DOI: 10.1115/1.3245684.

  22. Krishna, D.J., Basak, T., and Das, S.K., Natural Convection in a Heat Generating Hydrodynamically and Thermally Anisotropic Non-Darcy Porous Medium, Int. J. Heat Mass Transf., vol. 51, nos. 19-20, pp. 4691-4703, 2008a. DOI: 10.1016/j. ijheatmasstransfer.2008.02.019.

  23. Krishna, D.J., Basak, T., and Das, S.K., Numerical Study of Lid-Driven Flow in Orthogonal and Skewed Porous Cavity, Commun. Numer. Methods Eng., vol. 24,no. 10,pp. 815-831,2008b. DOI: 10.1002/cnm.993.

  24. Krishna, D.J., Basak, T., and Das, S.K., Natural Convection in a Non-Darcy Anisotropic Porous Cavity with a Finite Heat Source at the Bottom Wall, Int. J. Therm. Sci, vol. 48, no. 7, pp. 1279-1293,2009. DOI: 10.1016/j.ijthermalsci.2008.11.022.

  25. Krishna, D.J., Thansekhar, M.R., Venkateshan, S.P., Basak, T., and Das, S.K., Natural Convection in a Partially Heat Generating Rod Bundle inside an Enclosure, J. Heat Transf, vol. 132, no. 10,p. 102501,2010. DOI: 10.1115/1.4001610.

  26. Mahajan, A. andNandal, R., Stability of an Anisotropic Porous Layer with Internal Heat Source and Brinkman Effects, Spec. Top. Rev. Porous Media Int. J, vol. 10, no. 1,pp. 65-87,2019. DOI: 10.1615/SpecialTopicsRevPorousMedia.2018025396.

  27. Mahapatra, P.S., Mukhopadhyay, A., Manna, N.K., and Ghosh, K., Heatlines and Other Visualization Techniques for Confined Heat Transfer Systems, Int. J. Heat Mass Transf., vol. 118, pp. 1069-1079,2018. DOI: 10.1016/j.ijheatmasstransfer.2017.11.075.

  28. Mamou, M., Mahidjiba, A., Vasseur, P., and Robillard, L., Onset of Convection in an Anisotropic Porous Medium Heated from below by a Constant Heat Flux, Int. Commun. Heat Mass Transf., vol. 25, no. 6, pp. 799-808, 1998. DOI: 10.1016/S0735-1933(98)00066-9.

  29. Merrikh, A.A. and Mohamad, A.A., Non-Darcy Effects in Buoyancy Driven Flows in an Enclosure Filled with Vertically Layered Porous Media, Int. J. Heat Mass Transf., vol. 45, no. 21, pp. 4305-4313,2002. DOI: 10.1016/S0017-9310(02)00135-7.

  30. Mishra, A.K., Kumar, S., and Sharma, R.V., Non-Darcy Effects on Three-Dimensional Natural Convection in a Rectangular Box Containing a Heat-Generating Porous Medium, J. Porous Media, vol. 19,no. 12, pp. 1033-1043,2016. DOI: 10.1615/JPorMedia.v19.i12.20.

  31. Neffah, Z., Kahalerras, H., and Fersadou, B., Heat and Mass Transfer of a Non-Newtonian Fluid Flow in an Anisotropic Porous Channel with Chemical Surface Reaction, Fluid Dyn. Mater. Process., vol. 14, no. 1, pp. 39-56, 2018. DOI: 10.3970/fdmp.2018.014.039.

  32. Ni, J. and Beckermann, C., Natural Convection in a Vertical Enclosure Filled with Anisotropic Porous Media, J. Heat Transf., vol. 113, no. 4, pp. 1033-1037,1991. DOI: 10.1115/1.2911201.

  33. Nithiarasu, P., Seetharamu, K.N., and Sundararajan, T., Natural Convective Heat Transfer in a Fluid Saturated Variable Porosity Medium, Int. J Heat Mass Transf, vol. 40, no. 16, pp. 3955-3967,1997. DOI: 10.1016/S0017-9310(97)00008-2.

  34. Nithyadevi, N., Rajarathinam, M., and Suresh, N., Density Maximum Effect of Double-Diffusive Mixed Convection Heat Transfer in a Two-Sided Lid-Driven Porous Cavity, Spec. Top. Rev. Porous Media, vol. 8, no. 3, pp. 245-261,2017. DOI: 10.1615/SpecialTopicsRevPorousMedia.v8.i3.60.

  35. Pakdee, W., Yuvakanit, B., and Hussein, A.K., Numerical Analysis on the Two-Dimensional Unsteady Magnetohydrodynamic Compressible Flow through a Porous Medium, J Appl. Fluid Mech., vol. 10,no.4,pp. 1153-1159,2017. DOI: 10.18869/acad-pub.jafm.73.241.26644.

  36. Roy, M., Roy, S., and Basak, T., Finite Element Simulations on Heatline Trajectories for Mixed Convection in Porous Square Enclosures: Effects of Various Moving Walls, Eur. J. Mech. B/Fluids, vol. 59, pp. 140-160, 2016. DOI: 10.1016/j.euromechflu.2016.04.011.

  37. Saeid, N.H. and Pop, I., Non-Darcy Natural Convection in a Square Cavity Filled with a Porous Medium, Fluid Dyn. Res., vol. 36, no. 1, pp. 35-43,2005. DOI: 10.1016/j.fluiddyn.2004.10.004.

  38. Safi, S. and Benissaad, S., Double-Diffusive Convection in an Anisotropic Porous Layer Using the Darcy-Brinkman-Forchheimer Formulation, Arch. Mech, vol. 70, no. 1, pp. 89-102,2018.

  39. Saglam, M., Sarper, B., and Aydin, O., Natural Convection in an Enclosure with a Discretely Heated Sidewall: Heatlines and Flow Visualization, J. Appl. FluidMech., vol. 11, no. 1, pp. 271-284,2018. DOI: 10.18869/acadpub.jafm.73.244.28167.

  40. Sanjari, A., Abbaszadeh, M., and Abbassi, A., Lattice Boltzmann Simulation of Free Convection in an Inclined Openended Cavity Partially Filled with Fibrous Porous Media, J. Porous Media, vol. 21, no. 12, pp. 1265-1281, 2018. DOI: 10.1615/JPorMedia.2018028755.

  41. Singh, A.K., Basak, T., Nag, A., and Roy, S., Heatlines and Thermal Management Analysis for Natural Convection within Inclined Porous Square Cavities, Int. J. Heat Mass Transf., vol. 87, pp. 583-597,2015. DOI: 10.1016/j.ijheatmasstransfer.2015.03.043.

  42. Srivastava, A. and Singh, A.K., Linear and Weak Nonlinear Double Diffusive Convection in a Viscoelastic Fluid Saturated Anisotropic Porous Medium with Internal Heat Source, J. Appl. Fluid Mech., vol. 11, no. 1, pp. 65-77, 2018. DOI: 10.29252/jafm.11.01.27519.

  43. Swamy, M.S., Shivakumara, I.S., and Sidram, W., The Onset of Convection in a Gravity-Modulated Viscoelastic Fluid-Saturated Anisotropic Porous Layer, Spec. Top. Rev. PorousMedia, vol. 4, no. 1,pp. 69-80,2013. DOI: 10.1615/SpecialTopicsRevPorous-Media.v4.i1.70.

  44. Tao, W.Q., He, Y.L., and Chen, L., A Comprehensive Review and Comparison on Heatline Concept and Field Synergy Principle, Int. J. Heat Mass Transf., vol. 135, pp. 436-459,2019. DOI: 10.1016/j.ijheatmasstransfer.2019.01.143.

  45. Tinnaluri, N.S. and Devanuri, J.K., A Collocated Grid based Finite Volume Approach for the Visualization of Heat Transport in 2D Complex Geometries, Procedia Eng., vol. 127, pp. 79-86,2015. DOI: 10.1016/j.proeng.2015.11.429.

  46. Tinnaluri, N.S. and Devanuri, J.K., Heatline Visualization for Thermal Transport in Complex Solid Domains with Discrete Heat Sources at the Bottom Wall, Int. J. Heat Technol., vol. 37, no. 1, pp. 100-108,2019a. DOI: 10.18280/ijht.370112.

  47. Tinnaluri, N.S. and Devanuri, J.K., Numerical Investigation of Hydrodynamics for a Lid Driven Non-Darcy Anisotropic Porous Cavity, Spec. Top. Rev. Porous Media Int. J., vol. 10, no. 4, p. 396247, 2019b. DOI: 10.1615/specialtopicsrevporousmedia.2019029011.

  48. Vafai, K. and Kim, S.J., On the Limitations of the Brinkman-Forchheimer-Extended Darcy Equation, Int. J. Heat Fluid Flow, vol. 16, no. 1,pp. 11-15,1995. DOI: 10.1016/0142-727X(94)00002-T.

  49. Vafai, K. and Tien, C.L., Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media, Int. J. Heat Mass Transf., vol. 24, no. 2, pp. 195-203,1981. DOI: 10.1016/0017-9310(81)90027-2.

  50. Waheed, M.A., Heat Function Formulation of Thermal Convection in Rectangular Enclosures Filled with Porous Media, Numer. Heat Transf. Part A Appl., vol. 55, no. 2, pp. 185-204,2009. DOI: 10.1080/10407780802603246.

Zukünftige Artikel

HYDROMAGNETIC CASSON FLUID FLOW ACROSS AN INCLINED VERTICAL SURFACE IN POROUS CHANNEL WITH BUOYANCY AND THERMO-DIFFUSION EFFECTS Sowmiya C, Rushi Kumar B Effect of Helical Force on Thermal Convection of a Ferrofluid: A Weakly Non-linear Theory Jagathpally Sharathkumar Reddy, Kishan N, Shiva Kumar Reddy G, Ravi Ragoju STABILITY ANALYSIS OF A COUPLE-STRESS FLUID WITH VARIABLE GRAVITY IN A POROUS MEDIUM FOR DIFFERENT CONDUCTING BOUNDARIES Shalu Choudhary, Reeta Devi, Amit Mahajan, Sunil Sunil CREEPING FLOW ABOUT A TAINTED LIQUID DROP WITH A MICROPOLAR FLUID AND ALIGNED IN A POROUS MEDIUM FILLED WITH VISCOUS FLUID UTILISING SLIP PHANI KUMAR MEDURI, VIJAYA LAKSHMI KUNCHE Reviewing the Impact of Magnetic Prandtl Number and Magnetic Force Parameter on Convective Heat Transfer in Boundary Layers Hossam Nabwey, Muhammad Ashraf, Zia Ullah, Ahmed M. Rashad, Ali J. Chamkha Spectral Analysis for Entropy Generation and Irreversibility on NiZnFe_2O_4 – Engine Oil based Fluids RamReddy Chetteti, Sweta ., Pranitha Janapatla Study of global stability of rotating partially-ionized plasma saturating a porous medium Vishal Chandel, Sunil Kumar, Poonam Sharma Porous Medium Influenced Dissipative Hybrid Casson Nanofluid Flow over a Nonlinearly Stretching Sheet under Inclined Ohmic Lorentz Force Field A. R. Deepika, K. Govardhan, Hussain Basha, G Janardhana Reddy Effect of Motile Gyrotactic Microorganisms on Arterial Stenosis Sisko Nanofluid Flow Through Porous Medium : A Numerical Study Galal Moatimid, Mona Mohamed, Khaled Elagamy, Ahmed Gaber ELECTROTHERMOSOLUTAL CONVECTION IN NANOFLUID SATURATING POROUS MEDIUM Pushap Lata Sharma, Mohini Kapalta EFFECT OF VARIABLE GRAVITY ON THERMAL CONVECTION IN ROTATING JEFFREY NANOFLUID: DARCY-BRINKMAN MODEL Deepak Bains, Pushap Lata Sharma, Gian C. Rana Activation energy effect on MHD convective Maxwell nanofluid flow with Cattaneo-Christove heat flux over a porous stretching sheet JYOTHI NAGISETTY, VIJAYA KUMAR AVULA GOLLA Effects of different fins on Maxwell liquid under hybrid surveys of magnetic and porous material in presence of radiation factors Pooya Pasha, Payam Jalili, Bahram Jalili, Loghman Mostafa, Ahmed Mohammed Mahmood, Hussein Abdullah Abbas, D.D. Ganji
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen Preise und Aborichtlinien Begell House Kontakt Language English 中文 Русский Português German French Spain