Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Critical Reviews™ in Oncogenesis
SJR: 0.631 SNIP: 0.503 CiteScore™: 2.2

ISSN Druckformat: 0893-9675
ISSN Online: 2162-6448

Critical Reviews™ in Oncogenesis

DOI: 10.1615/CritRevOncog.v14.i2-3.30
pages 177-196

The Membrane-Bound Mucins: How Large O-Glycoproteins Play Key Roles in Epithelial Cancers and Hold Promise as Biological Tools for Gene-Based and Immunotherapies

Nicolas Jonckheere
Inserm, U837, Centre de Recherche Jean-Pierre Aubert, Place de Verdun, Lille, F-59045 France
Isabelle Van Seuningen
Inserm, U837, Centre de Recherche Jean-Pierre Aubert, France


Membrane-bound mucins belong to an ever-increasing family of O-glycoproteins that share a structure conserved throughout evolution. Typically, membrane-bound mucins contain a long extracellular domain, a hydrophobic transmembrane domain, and a short cytoplasmic tail. They are modular proteins and have a structural organization containing Pro/ Thr/Ser-rich O-glycosylated domains and EGF-like domains. The biological roles of mucins arise from their structures. MUC1 and MUC4 modulate biological properties of the cell, alter its behavior and modulate cell signaling pathways associated with tumorigenesis. Altered expression and post-translational modifications confer an important role to MUC1 and MUC4 in tumor progression, metastasis, and cancer cell chimioresistance. Moreover, increasing knowledge about their animal counterparts has made possible a greater understanding of their pathophysiological role in vivo. Most biological functions attributed to MUC4 are based on the structural homology with its rat homologue. From these results, the development of new biological tools targeting mucins has been increasing and the recent attention given to these complex molecules may bring hope for improved cancer treatments in the future. This review discusses the structure/function of MUC1 and MUC4 membrane-bound mucins in relation to cancer cell behavior and cell signaling pathways associated with tumorigenesis, as well as their potential as biological tools for gene therapy and immunotherapy approaches.

Articles with similar content:

Tumor Protein D52 Overexpression and Gene Amplification in Cancers from a Mosaic of Microarrays
Critical Reviews™ in Oncogenesis, Vol.14, 2008, issue 1
Jayne R. Hardy, Jennifer A. Byrne, Judith Weidenhofer, Keerthi Thamotharampillai, Mona Shehata
Nuclear Receptor Regulation of Genes Involved in Bile Acid Metabolism
Critical Reviews™ in Eukaryotic Gene Expression, Vol.12, 2002, issue 2
Bryan Goodwin, John T. Moore, Timothy M. Willson, Steven A. Kliewer
Neuronal NOS: Gene Structure, mRNA Diversity, and Functional Relevance
Critical Reviews™ in Neurobiology, Vol.13, 1999, issue 1
Derek C. Newton, Philip A. Marsden, Yang Wang
Polymeric Immunonanoparticles Mediated Cancer Therapy: Versatile Nanocarriers for Cell-Specific Cargo Delivery
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.35, 2018, issue 1
Niyati S. Acharya, Namdev L. Dhas, Ritu R. Kudarha, Sanjeev R. Acharya
Yin Yang 1 in Human Cancer
Critical Reviews™ in Oncogenesis, Vol.16, 2011, issue 3-4
Richard Byers, Khimara Naidoo, Sarah Nicholson, Helen Whitehouse