Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Critical Reviews™ in Oncogenesis
SJR: 0.631 SNIP: 0.503 CiteScore™: 2.2

ISSN Druckformat: 0893-9675
ISSN Online: 2162-6448

Critical Reviews™ in Oncogenesis

DOI: 10.1615/CritRevOncog.2017021074
pages 433-445

Tumor Suppressor Roles of the Denitrosylase GSNOR

Salvatore Rizza
Redox Signaling and Oxidative Stress Research Group, Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
Giuseppe Filomeni
Redox Signaling and Oxidative Stress Research Group, Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Biology, University of Rome Tor Vergata, Rome, Italy

ABSTRAKT

Nitric oxide (NO) is a gaseous pleiotropic molecule that can both induce irreversible oxidative damages and modulate physiological signal transductions by transient protein modifications, the most important of which is the S-nitrosylation of cysteine residues. Being noxious and healthy, the role of NO in cancer is seemingly contradictory, as at low concentrations it mediates tumor growth and proliferation whereas at high concentrations it promotes apoptosis and cancer growth inhibition. However, it is becoming evident that when endogenously produced, such as upon inducible nitric oxide synthase (NOS) activation, NO acts to sustain tumorigenesis. Similarly, although less explored, defects and deficiency in the denitrosylating enzyme S-nitrosoglutathione reductase (GSNOR) have been associated with the development and malignancy of liver and breast cancers, suggesting a primary role for NO signaling−that is, S-nitrosylation, being deeply involved in neoplastic transformation and progression. In this review, we summarize past and recent evidence on the role of S-nitrosylation and GSNOR in different processes that contribute to cell transformation when deregulated, such as DNA damage repair, energetic metabolism, and cell death. We also outline possible S-nitrosylation–targeted proteins that might contribute to tumorigenesis, and, finally, we speculate on the role of GSNOR in regulating the oncogenic effects induced downstream.


Articles with similar content:

Chemoprevention of Colon Cancer by iNOS-Selective Inhibitors
Onco Therapeutics, Vol.3, 2012, issue 2
Chinthalapally V. Rao, Naveena B. Janakiram
Ras Denitrosylation in Human Lung Cancer
Onco Therapeutics, Vol.3, 2012, issue 2
Benjamin Gaston, Nadzeya Marozkina
Review of Poly (ADP-ribose) Polymerase (PARP) Mechanisms of Action and Rationale for Targeting in Cancer and Other Diseases
Critical Reviews™ in Eukaryotic Gene Expression, Vol.24, 2014, issue 1
Longshan Li, Farjana J. Fattah, Jinming Gao, Julio Morales, David A. Boothman, Ying Dong, Malina Patel, Erik A. Bey
Type 2 Diabetes and Cancer: The Nitric Oxide Connection
Critical Reviews™ in Oncogenesis, Vol.24, 2019, issue 3
Asghar Ghasemi, Khosrow Kashfi, Parvin Mirmiran, Zahra Bahadoran
Epithelial-Mesenchymal Transition: A Special Focus on Phthalates and Bisphenol A
Journal of Environmental Pathology, Toxicology and Oncology, Vol.35, 2016, issue 1
Belmar Kocer-Gumusel, Ming-Wei Chao, Didem Oral, Pinar Erkekoglu