Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Critical Reviews™ in Oncogenesis
SJR: 0.631 SNIP: 0.503 CiteScore™: 2

ISSN Druckformat: 0893-9675
ISSN Online: 2162-6448

Critical Reviews™ in Oncogenesis

DOI: 10.1615/CritRevOncog.2019031365
pages 243-250

Hyperactivated Insulin Signaling Cascade in Human Glioblastoma Cells

Zhe Pei
Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, 160 Convent Avenue, New York, NY 10031, USA
Kuo-Chieh Lee
Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, 160 Convent Avenue, New York, NY 10031, USA
Amber Khan
Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, 160 Convent Avenue, New York, NY 10031, USA; Department of Biology, Neuroscience Program, Graduate School of The City University of New York, 365 Fifth Avenue, New York, NY 10061, USA
Hoau-Yan Wang
Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, 160 Convent Avenue, New York, NY 10031, USA; Department of Biology, Neuroscience Program, Graduate School of The City University of New York, 365 Fifth Avenue, New York, NY 10061, USA

ABSTRAKT

Glioblastoma multiforme (GBM) is the most common and malignant glial tumor. Although pro-growth, pro-survival, and pro-metastasis insulin signaling has been proposed to be a prominent driver of GBM progression, the insulin receptor (IR) signaling cascade in GBM has not been fully elucidated. Upon binding of the insulin and insulin-like growth factor-1 (IGF-1), IR is activated by increasing the levels of tyrosine-phosphorylated (pY) IRP on tyrosine 960, 1150, and 1151 residues as well as IRS-1 recruitment to IRβ. This leads to activation of the downstream PI3K/AKT/GSK3 or mTORC1/ERK, many of which are implicated in tumorigenesis including breast and liver carcinomas. Here, we directly compare insulin signaling in U87 MG human glioblastoma to primary human astrocytes by assessing the levels of activated IRβ, IRS-1 recruitment to IRβ, as well as downstream activated mitogenic ERK2 and pro-survival AKT1 under nonstimulated conditions and induced by 1 nM insulin. Our results show insulin receptor and its downstream signaling molecules are robustly hyperactivated. This mechanism renders a reduced insulin-induced response. Our findings provide a mechanism through which GBM develops and grows aggressively even without insulin.

REFERENZEN

  1. Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M. Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol. 2006;2:494-503; quiz 491, p. following 516.

  2. Agnihotri S, Burrell KE, Wolf A, Jalali S, Hawkins C, Rutka JT, Zadeh G. Glioblastoma, a brief review of history, molecular genetics, animal models and novel therapeutic strategies. Arch Immunol Ther Exp (Warsz). 2013;61:25-41.

  3. Makkar N, Ostrom QT, Kruchko C, Barnholtz-Sloan JS. A comparison of relative survival and cause-specific survival methods to measure net survival in cancer populations. Cancer Med. 2018;7:4773-80.

  4. Tsujimoto T, Kajio H, Sugiyama T. Association between hyperinsulinemia and increased risk of cancer death in nonobese and obese people: a population-based observational study. Int J Cancer. 2017;141:102-11.

  5. Vigneri P, Frasca F, Sciacca L, Pandini G, Vigneri R. Diabetes and cancer. Endocr Relat Cancer. 2009 Dec 1;16(4):1103-23.

  6. Cowey S, Hardy RW. The metabolic syndrome: a high-risk state for cancer? Am J Pathol. 2006;169:1505-22.

  7. Derr RL, Ye X, Islas MU, Desideri S, Saudek CD, Grossman SA. Association between hyperglycemia and survival in patients with newly diagnosed glioblastoma. J Clin Oncol. 2009;27:1082-86.

  8. Schultz H, Pedersen-Bjergaard U, Jensen AK, Engelholm SA, Kristensen PL. The influence on survival of glucocorticoid induced diabetes in cancer patients with metastatic spinal cord compression. Clin Transl Radiat Oncol. 2018;11:19-25.

  9. Heuson JC, Coune A, Heimann R. Cell proliferation induced by insulin in organ culture of rat mammary carcinoma. Exp Cell Res. 1967;45:351-60.

  10. Osborne CK, Bolan G, Monaco ME, Lippman ME. Hormone responsive human breast cancer in long-term tissue culture: effect of insulin. Proc Natl Acad Sci U S A. 1976;73:4536-40.

  11. Furstenberger G, Senn HJ. Insulin-like growth factors and cancer. Lancet Oncol. 2002;3:298-302.

  12. Yu H, Rohan T. Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst. 2000;92:1472-89.

  13. Gupta K, Krishnaswamy G, Karnad A, Peiris AN. Insulin: a novel factor in carcinogenesis. Am J Med Sci. 2002;323:140-45.

  14. Yip CC, Moule ML, Yeung CW. Characterization of insulin receptor subunits in brain and other tissues by photoaffinity labeling. Biochem Biophys Res Commun. 1980;96:1671-78.

  15. Heidenreich KA, Zahniser NR, Berhanu P, Brandenburg D, Olefsky JM. Structural differences between insulin receptors in the brain and peripheral target tissues. J Biol Chem. 1983;258:8527-30.

  16. Gammeltoft S, Van Obberghen E. Protein kinase activity of the insulin receptor. Biochem J. 1986;235:1-11.

  17. Seino S, Bell GI. Alternative splicing of human insulin receptor messenger RNA. Biochem Biophys Res Commun. 1989;159:312-16.

  18. Cheatham B, Kahn CR. Insulin action and the insulin signaling network. Endocr Rev. 1995;16:117-42.

  19. Combettes-Souverain M, Issad T. Molecular basis of insulin action. Diabetes Metab. 1998;24:477-89.

  20. Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, Fuino RL, Kawaguchi KR, Samoyedny AJ, Wilson RS, Arvanitakis Z. Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest. 2012 Apr 2;122(4):1316-38.

  21. Hirai T, Chida K. Protein kinase Czeta (PKCzeta): activation mechanisms and cellular functions. J Biochem. 2003;133:1-7.

  22. Smithers NP, Hodgkinson CP, Cuttle M, Sale GJ. 80K-H acts as a signaling bridge in intact living cells between PKCzeta and the GLUT4 translocation regulator Munc18c. J Recept Signal Transduct Res. 2008;28:581-89.

  23. Zhande R, Zhang W, Zheng Y, Pendleton E, Li Y, Polakiewicz RD, Sun XJ. Dephosphorylation by default, a potential mechanism for regulation of insulin receptor substrate-1/2, Akt, and ERK1/2. J Biol Chem. 2006;281:39071-80.

  24. Morisco C, Condorelli G, Trimarco V, Bellis A, Marrone C, Condorelli G, Sadoshima J, Trimarco B. Akt mediates the cross-talk between beta-adrenergic and insulin receptors in neonatal cardiomyocytes. Circ Res. 2005;96:180-88.

  25. Sun XJ, Liu F. Phosphorylation of IRS proteins Yin-Yang regulation of insulin signaling. Vitam Horm. 2009;80:351-87.

  26. Veilleux A, Houde VP, Bellmann K, Marette A. Chronic inhibition of the mTORC1/S6K1 pathway increases insulin-induced PI3K activity but inhibits Akt2 and glucose transport stimulation in 3T3-L1 adipocytes. Mol Endocrinol. 2010;24:766-78.

  27. Wang HY, Lee KC, Pei Z, Khan A, Bakshi K, Burns, LH. PTI-125 binds and reverses an altered conformation of filamin A to reduce Alzheimer's disease pathogenesis. Neurobiol Aging. 2017;55:99-114.

  28. Wang HY, Bakshi K, Frankfurt M, Stucky A, Goberdhan M, Shah SM, Burns, LH. Reducing amyloid-related Alzheimer's disease pathogenesis by a small molecule targeting filamin A. J Neurosci. 2012;32:9773-84.

  29. Gong Y, Ma Y, Sinyuk M, Loganathan S, Thompson Hyperactivated Insulin Signaling Cascade Volume 24, Issue 3, 2019 RC, Sarkaria JN, Chen W, Lathia JD, Mobley BC, Clark SW, Wang J. Insulin-mediated signaling promotes proliferation and survival of glioblastoma through Akt activation. Neuro Oncol. 2015 Jul 1;18(1):48-57.

  30. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, Pollak M, Regensteiner JG, Yee D. Diabetes and cancer: a consensus report. Diabetes Care. 2010;33:1674-85.

  31. Kitahara CM, Flint AJ, de Gonzalez AB, Bernstein L, Brotzman M, MacInnis RJ, Moore SC, Robien K, Rosenberg PS, Singh PN, Weiderpass E. Association between class III obesity (BMI of 40-59 kg/m2) and mortality: a pooled analysis of 20 prospective studies. PLoS Med. 2014 Jul 8;11(7):e1001673.

  32. Seliger C, Ricci C, Meier CR, Bodmer M, Jick SS, Bogdahn U, Hau P, Leitzmann MF. Diabetes, use of antidiabetic drugs, and the risk of glioma. Neuro Oncol. 2016;18:340-49.

  33. Chambless LB, Parker SL, Hassam-Malani L, McGirt MJ, Thompson RC. Type 2 diabetes mellitus and obesity are independent risk factors for poor outcome in patients with high-grade glioma. J Neuro Oncol. 2012;106:383-89.

  34. Mayer IA, Abramson VG, Isakoff SJ, Forero A, Balko JM, Kuba MG, Sanders ME, Yap JT, Van den Abbeele AD, Li Y, Cantley LC. Stand up to cancer phase Ib study of pan-phosphoinositide-3-kinase inhibitor buparlisib with letrozole in estrogen receptor-positive/human epidermal growth factor receptor 2-negative metastatic breast cancer. J Clin Oncol. 2014 Apr 20;32(12):1202.

  35. Baskin DG, Stein LJ, Ikeda H, Woods SC, Figlewicz DP, Porte D, Jr., Greenwood MR, Dorsa DM. Genetically obese Zucker rats have abnormally low brain insulin content. Life Sci. 1985;36:627-33.

  36. Kaiyala KJ, Prigeon RL, Kahn SE, Woods SC, Schwartz MW. Obesity induced by a high-fat diet is associated with reduced brain insulin transport in dogs. Diabetes. 2000;49:1525-33.

  37. Dallongeville J, Marecaux N, Ducimetiere P, Ferrieres J, Arveiler D, Bingham A, Ruidavets JB, Simon C, Amouyel P. Influence of alcohol consumption and various beverages on waist girth and waist-to-hip ratio in a sample of French men and women. Int J Obes Relat Metab Disord. 1998;22:1178-83.

  38. Lage M, Garcia-Mayor RV, Tome MA, Cordido F, Valle-Inclan F, Considine RV, Caro JF, Dieguez C, Casanueva FF. Serum leptin levels in women throughout pregnancy and the postpartum period and in women suffering spontaneous abortion. Clin Endocrinol (Oxf). 1999;50:211-16.

  39. Fietta P. Focus on leptin, a pleiotropic hormone. Minerva Med. 2005;96:65-75.

  40. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008 Oct;455(7216):1061.

  41. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, Beroukhim R. TCGA Research Network. The somatic genomic landscape of glioblastoma. Cell. 2013 Oct;155(2):462-77.

  42. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997 Mar 28;275(5308):1943-7.

  43. Bleeker FE, Lamba S, Zanon C, Molenaar RJ, Hulsebos TJ, Troost D, van Tilborg AA, Vandertop WP, Leenstra S, van Noorden CJ, Bardelli A. Mutational profiling of kinases in glioblastoma. BMC Cancer. 2014 Dec;14(1):718.

  44. Los M, Maddika S, Erb B, Schulze-Osthoff K. Switching Akt: from survival signaling to deadly response. Bioessays. 2009;31:492-95.

  45. Xu N, Lao Y, Zhang Y, Gillespie DA. Akt: a double-edged sword in cell proliferation and genome stability. J Oncol. 2012 Mar 15; 2012:951724.

  46. Yu JS, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development. 2016;143:3050-60.

  47. Hers I, Tavare JM. Mechanism of feedback regulation of insulin receptor substrate-1 phosphorylation in primary adipocytes. Biochem J. 2005;388:713-20.

  48. Copps KD, White MF. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia. 2012;55:2565-82.