Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 1.199 5-jähriger Impact-Faktor: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volumen 51, 2020 Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2019027218
pages 517-535

NUMERICAL INVESTIGATION OF ENTROPY GENERATION DURING THE DISCHARGE OF ENCAPSULATED PHASE CHANGE MATERIAL-BASED THERMAL ENERGY STORAGE

Kunal Bhagat
Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai-400076, India
Sandip Kumar Saha
Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai – 400076. Maharashtra, India

ABSTRAKT

A latent heat thermal energy storage system (LHTES) has a potential to improve the load stability by mitigating the fluctuations encountered in concentrated solar thermal power plants. In this paper, heat transfer analysis of LHTES during the discharging period is studied by estimating pressure losses, first-law efficiency, and temporal variation of entropy generation. The LHTES considered in this study is of packed bed type where a phase change material (PCM) is encapsulated in a spherical shell, which forms the solid portion, and heat transfer fluid (HTF) flows through a porous zone in a packed bed. The numerical model considered is two-dimensional axisymmetric, which takes into consideration the mass, momentum, and energy conservation equations in a porous medium. Heat transfer between HTF and PCM is modeled using two-temperature equations coupled with an enthalpy-porosity technique to analyze the isothermal phase change behavior during solidification of PCM. The numerical model is first validated with the published experimental results. The effects of several parameters, such as porosity, inner encapsulation diameter, encapsulation shell thickness, and encapsulation shell material are further studied. It is found that the LHTES produces more entropy due to the internal diffusion process, which is prominent in the system with a large coefficient of overall volumetric heat transfer between HTF and PCM. The first-law efficiency of discharging is affected significantly by porosity rather than by any other parameter considered in the study.

REFERENZEN

  1. Adebiyi, G.A., A Second-Law Study on Packed Bed Energy Storage Systems Utilizing Phase-Change Materials, J. Sol. Eng. ASME, vol. 113, pp. 146-156, 1991.

  2. Agyenim, F., Eames, P., and Smyth, M., Heat Transfer Enhancement in Medium Temperature Thermal Energy Storage System Using a Multitube Heat Transfer Array, Renew. Energy, vol. 35, pp. 198-207, 2010.

  3. Akhilesh, R., Narasimhan, A., and Balaji, C., Method to Improve Geometry for Heat Transfer Enhancement in PCM Composite Heat Sinks, Int. J. Heat Mass Transf, vol. 48, pp. 2759-2770, 2005.

  4. Amin, N., Mohamad, A., Abdul Majid, M., Afendi, M., Bruno, F., and Belusko, M., Experimental Investigation of PCM Spheres in Thermal Energy Storage System, Appl. Mech. Mater., vol. 367, pp. 228-233, 2013.

  5. Archibold, A., Rahman, M., Aguilar, J., Goswami, D., Stefanakos, E., and Romero, M., Phase Change and Heat Transfer Numerical Analysis during Solidification on an Encapsulated Phase Change Material, Energy Procedia, vol. 57, pp. 653-661, 2014.

  6. Asker, M., Ganjehsarabi, H., and Coban, M.T., Numerical Investigation of Inward Solidification inside Spherical Capsule by Using Temperature Transforming Method, Ain Shams Eng. J., vol. 9, pp. 537-547, 2018.

  7. Assis, E., Ziskind, G., and Letan, R., Numerical and Experimental Study of SolfiliationinaSphericalShell, J. Heat Transf. ASME, vol. 131, pp. 1-5, 2009.

  8. Beasley, D.E. and Clark, J.A., Transient Response of a Packed Bed for Thermal Energy Storage, Int. J. Heat Mass Transf., vol. 27, pp. 1659-1669, 1984.

  9. Bejan, A., Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes, Boca Raton, FL: CRC Press, 1995.

  10. Bellan, S., Alam, T., Aguilar, J., Romero, M., Rahman, M., Goswami, D., and Stefanakos, E., Numerical and Experimental Studies on Heat Transfer Characteristics of Thermal Energy Storage System Packed with Molten Salt PCM Capsules, Appl. Therm. Eng., vol. 90, pp. 970-979, 2015.

  11. Benmansour, A., Hamdan, M., and Bengeuddach, A., Experimental and Numerical Investigation of Solid Particles Thermal Energy Storage Unit, Appl. Therm. Eng., vol. 26, pp. 513-518, 2006.

  12. Bhagat, K. and Saha, S.K., Numerical Analysis of Latent Heat Thermal Energy Storage Using Encapsulated Phase Change Material for Solar Thermal Power Plant, Renew. Energy, vol. 95, pp. 323-336, 2016.

  13. Boerema, N., Morrison, G., Taylor, R., and Rosengarten, G., Liquid Sodium versus HITEC as a Heat Transfer Fluid in Solar Thermal Central Receiver Systems, Sol. Energy, vol. 86, pp. 2293-2305, 2012.

  14. Brent, D., Voller, V.R., and Reid, K.J., Enthalpy-Porosity Technique for Modeling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal, Numer. Heat. Transf.., vol. 13, pp. 297-318, 1988.

  15. Bugaje, M., Enhancing the Thermal Response of Latent Heat Storage Systems, Int. J. Energy Res., vol. 21, pp. 759-766, 1997.

  16. Cabeza, L.F., Sole, C., Castell, A., Oro, E., and Gil, A., Review of Solar Thermal Storage Techniques and Associated Heat Transfer Technologies, Proc. IEEE, vol. 100, pp. 525-538, 2012.

  17. Chow, L., Zhong, J., and Beam, J., Thermal Conductivity Enhancement for Phase Change Storage Media, Int. Commun. Heat Mass Transf., vol. 23, pp. 91-100, 1996.

  18. Eftekhar, J., Sheikh, A., and Lou, D., Heat Transfer Enhancement in a Paraffin Wax Thermal Storage System, J. Sol. Energy Eng., vol. 106, pp. 299-306, 1984.

  19. Emerson, J., Micah, H., and Panneer, S., Concrete as a Thermal Energy Storage Medium for Thermocline Solar Energy Storage Systems, Sol. Energy, vol. 96, pp. 194-204, 2013.

  20. Erk, H. and Dudukovic, M., Phase Change Heat Regenerators. Modeling and Experimental Studies, AIChE J., vol. 42, pp. 791-808, 1996.

  21. Flueckiger, S. and Garimella, S.V., Latent Heat Augmentation of Thermocline Energy Storage, Appl. Energy, vol. 116, pp. 278-287, 2014.

  22. Flueckiger, S. and Garimella, S.V., Second-Law Analysis of Molten-Salt Thermal Energy Storage in Thermoclines, Sol. Energy, vol. 86, pp. 1621-1631, 2012.

  23. Fukai, J., Kanou, M., Kodama, Y., and Miyatake, O., Thermal Conductivity Enhancement of Energy Storage Media Using Carbon Fibers, Energy Convers. Manage., vol. 41, pp. 1543-1556, 2000.

  24. Ismail, K., Alves, C., and Modesto, M., Numerical and Experimental Study on the Solidification of PCM around a Vertical Axially Finned Isothermal Cylinder, Appl. Therm. Eng., vol. 21, pp. 53-77, 2001.

  25. Ismail, K. and Henriquez, J.R., Numerical and Experimental Study of Spherical Capsules Packed Bed Latent Heat Storage System, Int. J. Therm. Sci., vol. 42, pp. 881-887, 2003.

  26. Izquierdo-Barrientos, M., Sobrino, C., and Almendros-Ibanez, J., Thermal Energy Storage in a Fluidized Bed of PCM, Chem. Eng. J., vol. 230, pp. 573-583, 2013.

  27. Koca, A., Octopi, H.F., Koyun, T., and Varol, Y., Energy and Exergy Analysis of a Latent Heat Storage System with Phase Change Material for a Solar Collector, Renew. Energy, vol. 33, pp. 567-574, 2008.

  28. Kousksou, T., Strub, F., Lasvignottes, J.C., Jamil, A., and Bedecarrats, J.P., Second Law Analysis of Latent Thermal Storage for Solar System, Renew. Energy, vol. 91, pp. 1275-1281, 2007.

  29. Lenert, A., Nam, Y., Yilbas, B., and Wang, E., Focusing of Phase Change Microparticles for Local Heat Transfer Enhancement in Laminar Flows, Int. J. Heat Mass Transf., vol. 56, pp. 380-389, 2013.

  30. Li, Y.Q., He, Y.L., Wang, Z.F., Xu, C., and Wang, W., Exergy Analysis of Two-Phase Change Materials Storage System for Solar Thermal Power with Finite-Time Thermodynamics, Renew. Energy, vol. 39, pp. 447-454, 2012.

  31. MacPhee, D., Dincer, I., and Beyene, A., Numerical Simulation and Exergetic Performance Assessment of Charging Process in Encapsulated Ice Thermal Energy Storage System, Energy, vol. 41, pp. 491-498, 2012.

  32. Mesalhy, O., Lafdi, K., Elgafy, A., and Bowman, K., Numerical Study for Enhancing the Thermal Conductivity of Phase Change Material (PCM) Storage Using High Thermal Conductivity Porous Matrix, Energy Convers. Manage., vol. 46, pp. 847-867, 2005.

  33. Mettawee, E.S. and Assassa, G.M.R., Thermal Conductivity Enhancement in a Latent Heat Storage System, Sol. Energy, vol. 81, pp. 839-845, 2007.

  34. Milisic, E., Modeling of Energy Storage Using Phase-Change Materials (PCM Materials), Masters, Norwegian University of Science and Technology, 2013.

  35. Mosaffa, A., Talati, F., Tabrizi, H., and Rosen, M., Analytical Modeling of PCM Solidification in a Shell and Tube Finned Thermal Storage for Air Conditioning Systems, Energy Build., vol. 49, pp. 356-361, 2012.

  36. Nithyanandam, K. and Pitchumani, R., Optimization of an Encapsulated Phase Change Material Thermal Energy Storage System, Sol. Energy, vol. 107, pp. 770-788, 2014.

  37. Pizzolato, A., Sciacovelli, A., and Verda, V., Transient Local Entropy Generation Analysis for the Design Improvement of a Thermocline Thermal Energy Storage, Appl. Therm. Eng., vol. 101, pp. 622-629, 2016.

  38. Py, X., Olives, R., and Mauran, S., Paraffin/Porous-Graphite-Matrix Composite as a High and Constant Power Thermal Storage Material, Int. J. Heat Mass Transf, vol. 44, pp. 2727-2737, 2001.

  39. Qin, F., Yang, X., Ding, Z., Zuo, Z., Shao, Y., Jiang, R., and Yang, X., Thermocline Stability Criterions in Single-Tanks of Molten Salt Thermal Energy Storage, Appl. Energy, vol. 97, pp. 816-821, 2012.

  40. Rosen, M.A., Hopper, F.C., and Barbaris, L.N., Exergy Analysis for the Evaluation of the Performance of Closed Thermal Energy Storage Systems, J. Sol. Eng. ASME, vol. 110, pp. 255-261, 1988.

  41. Salunkhe, P. and Shembekar, P., A Review on Effect of Phase Change Material Encapsulation on the Thermal Performance of a System, Renew. Sustain. Energy Rev., vol. 16, pp. 5603-5616, 2012.

  42. Sari, A. and Karaipekli, A., Thermal Conductivity and Latent Heat Thermal Energy Storage Characteristics of Paraffin/Expanded Graphite Composite as Phase Change Material, Appl. Therm. Eng., vol. 27, pp. 1271-1277, 2007.

  43. Schumann, T., Heat Transfer: A Liquid Flowing through a Porous Prism, J. Franklin Inst., vol. 208, pp. 405-416, 1929.

  44. Sciacovelli, A. and Verda, V., Second-Law Design of a Latent Heat Thermal Energy Storage with Branched Fins, Int. J. Numer. Meth. Heat Fluid Flow, vol. 26, 489-503, 2016.

  45. Seyf, H., Zhou, Z., Ma, H., and Zhang, Y., Three-Dimensional Numerical Study of Heat-Transfer Enhancement by Nano-En-capsulated Phase Change Material Slurry in Microtube Heat Sinks with Tangential Impingement, Int. J. Heat Mass Transf., vol. 56, pp. 561-573, 2013.

  46. Shinde, A., Arpit, S., Pramod, K.M., Rao, P.V.C., and Saha, S.K., Heat Transfer Characterization and Optimization of Latent Heat Thermal Storage System Using Fins for Medium Temperature, J. Sol. Energy Eng. ASME, vol. 139, p. 031003, 2017.

  47. Shitzer, A. and Levy, M., Transient Behavior of a Rock-Bed Thermal Storage System Subjected to Variable Inlet Air Temperatures: Analysis and Experimentation, J. Sol. Energy Eng. ASME, vol. 105, pp. 200-206, 1983.

  48. Sigel, R., Solidification of Low Conductivity Material Containing Dispersed High Conductivity Particles, Int. J. Heat Mass Transf., vol. 20, pp. 1087-1089, 1977.

  49. Solomon, L. and Oztekin, A., Exergy Analysis of Cascaded Encapsulated Phase Change Material High-Temperature Thermal Energy Storage Systems, J. Energy Storage, vol. 8, pp. 12-26, 2016.

  50. Tong, X., Khan, J., and Amin, M., Enhancement of Heat Transfer by Inserting a Metal Matrix into a Phase Change Material, Numer. Heat Transf., vol. 30, pp. 125-141, 1996.

  51. Vafai, K., Convective Flow and Heat Transfer in Variable-Porosity Media, J. Fluid Mech., vol. 147, pp. 233-259, 1984.

  52. Veerappan, M., Kalaiselvam, S., Iniyan, S., and Goic, R., Phase Change Characteristic Study of Spherical PCMs in Solar Enegy Storage, Sol. Energy, vol. 83, pp. 1245-1252, 2007.

  53. Velraj, R., Seeniraj, R., Hafner, B., Faber, C., and Schwarzer, K., Heat Transfer Enhancement in a Latent Heat Storage System, Sol. Energy, vol. 65, pp. 171-80, 1999.

  54. Wakao, N., Kaguei, S., and Funazkri, T., Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients in Packed Beds: Correlation of Nusselt Numbers, Chem. Eng. Sci., vol. 34, pp. 325-336, 1979.

  55. Wu, Z. and Zhao, C., Experimental Investigations of Porous Materials in High Temperature Thermal Energy Storage Systems, Sol. Energy, vol. 85, pp. 1371-1380, 2011.

  56. Xu, Y., He, Y.L., Li, Y.Q., and Song, H.J., Exergy Analysis and Optimization of Charging-Discharging Processes of Latent Heat Thermal Energy Storage System with Three Phase Change Materials, Sol. Energy, vol. 123, pp. 206-216, 2016.

  57. Yang, J., Zhao, C., and Hutchins, D., Modeling the Effect of Binary Phase Composition on Inward Solidification of a Particle, Int. J. Heat Mass Transf., vol. 55, pp. 6766-6774, 2012.

  58. Yang, Z. and Garimella, S., Molten-Salt Thermal Energy Storage in Thermoclines under Different Environmental Boundary Conditions, Appl. Energy, vol. 87, pp. 3322-2239, 2010.

  59. Zhang, J., Zhang, X., Wan, Y., Mei, D., and Zhang, B., Preparation and Thermal Energy Properties of Paraffin/Halloysite Nano-tube Composite as Form-Stable Phase Change Material, Sol. Energy, vol. 86, pp. 1142-1148, 2012.


Articles with similar content:

CFD Analysis of Latent Heat Energy Storage System with Different Geometric Configurations and Flow Conditions
Proceedings of the 25th National and 3rd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2019), Vol.0, 2019, issue
P. Anil Kishan, Pushpendra Kumar Shukla
NUMERICAL ANALYSIS OF CONCENTRIC DOUBLE PIPE LATENT THERMAL ENERGY STORAGE UNIT USING TWO PHASE CHANGE MATERIALS FOR SOLAR WATER HEATING APPLICATIONS
Computational Thermal Sciences: An International Journal, Vol.10, 2018, issue 4
Hocine Benmoussa, Riadh Ouzani, Fouzi Benmoussa, Ahmed Benzaoui
LOCAL ZEOLITE MINERAL (CLINOPTILOLITE) IN ENERGY SYSTEMS
Energy and the Environment, 1998, Vol.0, 1998, issue
S. Ulku, F.C. Ozkan
A FIXED-GRID TWO-PHASE NUMERICAL MODEL FOR CONVECTION DOMINATED SOLIDIFICATION OF THE ALLOY
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
Abdel Illah Nabil Korti
A STUDY OF THE ONSET OF NATURAL CONVECTION DURING MELTING OF PCMS IN A CYLINDRICAL ENCLOSURE
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2017, issue
Adam Donaldson, Mohammad Azad, Dominic Groulx