Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 0.404 5-jähriger Impact-Faktor: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2014006816
pages 701-723

NUMERICAL STUDY OF THE SHELL−SIDE PERFORMANCE OF THE TRISECTION BAFFLED AND QUARTERN BAFFLED HEAT EXCHANGERS

Yongli Sun
School of Chemical Engineering and Technology; National Engineering Research Center for Distillation Technology, Tianjin University, Tianjin, P. R. China
Feiyang Li
School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
Luhong Zhang
School of Chemical Engineering and Technology, Tianjin University, 92, Weijin Road, Tianjin 300072, China
Bin Jiang
School of Chemical Engineering and Technology; National Engineering Research Center for Distillation Technology, Tianjin University, Tianjin, P. R. China
Xiaoming Xiao
School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China

ABSTRAKT

In this article, the heat transfer performance and the resistance loss of a trisection baffled heat exchanger and a quartern baffled heat exchanger with 20°, 30°, 40°, and 50° helical angles are analyzed comparatively by using the commercial codes GAMBIT 6.4 and FLUENT 14.0. With the same helical angle and under the same shell side volume flow rate, both the average heat transfer coefficient and the pressure drop of the trisection baffled heat exchanger are larger than those of the quartern baffled heat exchanger because of the longer helical line in the former. However, the heat transfer coefficient per pressure drop of the trisection baffled heat exchanger is lower than that of the quartern baffled heat exchanger. So the comprehensive performance of the quartern baffled heat exchanger is better than that of the trisection baffled heat exchanger. It is also observed that the comprehensive performance of a quartern baffled heat exchanger with the 40° helical angle is the best. A series of simulations on the trisection baffled heat exchanger and the quartern baffled heat exchanger with the same helical pitch are also carried out, with the simulation results demonstrating that with the same helical line, the outlet temperature and the pressure drop of the trisection baffled heat exchanger are similar to those of the quartern baffled heat exchanger. According to two simulation results for the former we can conclude that the major influencing factor on the heat transfer performance and resistance loss in a helically baffled heat exchanger is the helical line. The research achievement of heat transfer and flow distribution in this investigation will provide theoretical basis for further optimization of the helically baffled heat exchanger.


Articles with similar content:

INVESTIGATION ON EFFECT OF FIN PATTERN OF HOT-SIDE HEAT SINK UNDER EXPULSION FLOW FOR A PORTABLE THERMOELECTRIC UNIT
International Heat Transfer Conference 16, Vol.14, 2018, issue
Dongliang Zhao, Ronggui Yang, Xing Lu , Jintu Fan, Qiu-Wang Wang, Ting Ma
THT FIN SIDE FLOW AND HEAT TRANSFER CHARACTERISTICS OF CIRCULAR TUBE BANK FIN HEAT EXCHANGER WITH THE TRANGULARWAVY FINS
Second Thermal and Fluids Engineering Conference, Vol.30, 2017, issue
Liang-Bi Wang, Zhi-Min Lin, J. Liu, Y. H. Zhang
EXPERIMENTAL INVESTIGATION ON HEAT TRANSFER COEFFICIENTS AND FRICTIONAL PRESSURE DROP DURING R134A CONDENSATION INSIDE A PLATE-FIN HEAT EXCHANGER WITH WAVY FIN
International Heat Transfer Conference 16, Vol.7, 2018, issue
X. Luo, K.V. Ramana Murthy, T. P. Ashok Babu, Chennu Ranganayakulu
NUMERICAL INVESTIGATION OF COMBINED PARALLEL TWO SHELL-PASS SHELL-AND-TUBE HEAT EXCHANGERS WITH CONTINUOUS HELICAL BAFFLES
Heat Transfer Research, Vol.47, 2016, issue 6
Qiu-Wang Wang, Jian-Feng Yang, Min Zeng
THERMAL HYDRAULIC CHARACTERISTICS OF A TRIANGULAR CROSS CORRUGATED PLATE
International Heat Transfer Conference 16, Vol.9, 2018, issue
Asal Sharif, Michel De Paepe