Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 0.404 5-jähriger Impact-Faktor: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volumen 51, 2020 Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2013005865
pages 199-218

MIXED CONVECTION IN MHD MICROPOLAR FLUID WITH RADIATION AND CHEMICAL REACTION EFFECTS

D. Srinivasacharya
Department of Mathematics, National Institute of Technology, Warangal-506004, India
M. Upendar
Department of Mathematics, NIT Warangal-506 004, AP, India

ABSTRAKT

This article analyzes a mathematical model for the steady, mixed convection heat and mass transfer along a semi-infinite vertical plate embedded in a micropolar fluid in the presence of a first-order chemical reaction and radiation. A uniform magnetic field is applied normal to the plate. The plate is maintained with variable surface heat and mass fluxes. The governing nonlinear partial differential equations and their associated boundary conditions are transformed into a system of coupled nonlinear ordinary differential equations using similarity transformations and then solved numerically using the Keller box method. The numerical results are compared and found to be in good agreement with previously published results as special cases of the present investigation. The nondimensional velocity, microrotation, temperature, concentration profiles, the rate of heat transfer, the rate of mass transfer, the skin friction coefficient, and the wall couple stress at the plate are presented graphically for different values of coupling number, Prandtl number, Schmidt number, magnetic parameter, radiation parameter, and chemical reaction parameter.


Articles with similar content:

A FINITE ELEMENT NUMERICAL APPROACH TO UNSTEADY FREE CONVECTIVE FLOW OF MICROPOLAR FLUID PAST AN INCLINED PLATE WITH DISSIPATIVE HEAT ENERGY
International Journal of Fluid Mechanics Research, Vol.46, 2019, issue 6
Satyaranjan R. Mishra, D. K. Mohapatra, M. D. Shamshuddin
EFFECTS OF RADIATION AND CHEMICAL REACTION ON HEAT AND MASS TRANSFER BY NATURAL CONVECTION IN A MICROPOLAR FLUID-SATURATED POROUS MEDIUM WITH STREAMWISE TEMPERATURE AND SPECIES CONCENTRATION VARIATIONS
Heat Transfer Research, Vol.45, 2014, issue 8
S.M.M. EL-Kabeir, Ahmed M. Rashad, Ali J. Chamkha
ROTATING UNSTEADY MULTI-PHYSICO-CHEMICAL MAGNETO-MICROPOLAR TRANSPORT IN POROUS MEDIA: GALERKIN FINITE ELEMENT STUDY
Computational Thermal Sciences: An International Journal, Vol.10, 2018, issue 2
A. Kadir, S. Siva Reddy, M. D. Shamshuddin, O. Anwar Bég
FINITE-ELEMENT ANALYSIS OF TRANSIENT HEAT AND MASS TRANSFER IN MICROSTRUCTURAL BOUNDARY LAYER FLOW FROM A POROUS STRETCHING SHEET
Computational Thermal Sciences: An International Journal, Vol.6, 2014, issue 2
Osman Anwar Beg, Diksha Gupta, Bani Singh, Lokendra Kumar
Effects of Variable Properties on Magnetohydrodinamics Unsteady Mixed-Convection in non-Newtonian Fluid with Variable Surface Temperature
Journal of Porous Media, Vol.12, 2009, issue 5
Nasser S. Elgazery, Nader Y. Abd Elazem