Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 0.404 5-jähriger Impact-Faktor: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2014006034
pages 471-484

STRUCTURAL IDENTIFICATION OF A THERMAL PROCESS USING THE VOLTERRA MODEL

Safa Chouchane
Research Unit ATSI, National School of Engineers of Monastir, University of Monastir, Rue Ibn El Jazzar, 5019 Monastir, Tunisia
Kais Bouzrara
Research Unit ATSI, National School of Engineers of Monastir, University of Monastir, Rue Ibn El Jazzar, 5019 Monastir, Tunisia
Hassani Messaoud
Research Unit ATSI, National School of Engineers of Monastir, University of Monastir, Rue Ibn El Jazzar, 5019 Monastir, Tunisia

ABSTRAKT

This paper proposes a new method to estimate, from input/output measurements, the structural parameters (order and memory) of the Volterra models used for describing a nonlinear thermal process, the Trainer PT326. The proposed estimation method is an extension of the recent work in which a new algorithm for estimating the memory of the Volterra model was proposed. The structure parameters identification method, proposed in this paper, is based on the definition of a specific matrix whose components are lagged inputs and lagged outputs. We prove that this matrix becomes singular once the parameter value exceeds its exact value. The estimated values of the order and the memory are used to provide a suitable Volterra model for the Process Trainer PT326. The performance of the model and the identification method that uses experimental data are evaluated.


Articles with similar content:

A NEW METHOD TO DETERMINE THE THERMAL PROPERTIES OF SOIL FOR VERTICAL-BOREHOLE GROUND-SOURCE HEAT PUMP SYSTEMS
Heat Transfer Research, Vol.46, 2015, issue 5
Bo Gu, Xingjie Dong
ILL-POSED PROBLEMS OF THE MECHANICS (RHEOLOGY) OF VISCOELASTIC MEDIA AND THE METHODS TO REGULARIZE THEM
Composites: Mechanics, Computations, Applications: An International Journal, Vol.1, 2010, issue 3
Yu. A. Basistov, Yuri G. Yanovsky
A NEURONET MODEL OF VISCOELASTIC BEHAVIOR OF RELAXING MEDIA IN THE REGIME OF FINITE DEFORMATIONS
Composites: Mechanics, Computations, Applications: An International Journal, Vol.4, 2013, issue 2
Yu. A. Basistov, Yuri G. Yanovsky
HESSIAN-BASED SAMPLING FOR HIGH-DIMENSIONAL MODEL REDUCTION
International Journal for Uncertainty Quantification, Vol.9, 2019, issue 2
Omar Ghattas, Peng Chen
CLTD-OSIC NONLINEAR PRECODING ALGORITHM FOR MU-MIMO TDD MULTIUSER SYSTEMS
Telecommunications and Radio Engineering, Vol.77, 2018, issue 7
V. B. Kreyndelin , T. B. K. Ben Rejeb