Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 0.404 5-jähriger Impact-Faktor: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volumen 51, 2020 Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018019878
pages 1231-1246

UNSTEADY CONVECTION HEAT AND MASS TRANSFER OF A FRACTIONAL OLDROYD-B FLUID WITH CHEMICAL REACTION AND HEAT SOURCE/SINK EFFECT

Jinhu Zhao
School of Mathematics and Statistics, Fuyang Normal College, Fuyang 236037, Anhui, China
Liancun Zheng
School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
Xinxin Zhang
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, University of Science and Technology Beijing, Beijing 100083, China
Fawang Liu
School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld. 4001, Australia

ABSTRAKT

This paper studies unsteady convection heat and mass transfer of a fractional Oldroyd-B fluid in the presence of chemical reaction and heat source/sink. Nonlinear coupled governing equations with time−space derivatives are derived and solved numerically. The effects of involved parameters on velocity, temperature, and concentration fields are analyzed. The results show that fractional derivative parameters have a remarkable influence on the viscoelastic properties of the fluid and play an opposite role in the boundary layer. With increase of the buoyancy ratio number, the velocity distributions rise, but the temperature distributions decline. Moreover, the heat source generates energy causing the temperature of the fluid to increase, while the heat sink absorbs energy which leads to the decrease of the temperature. Chemical reaction reduces the concentration boundary-layer thickness and improves the rate of mass transfer.


Articles with similar content:

Unsteady Free Convective Viscoelastic Boundary Layer Flow Past a Vertical Porous Plate with Internal Heat Generation/Absorption
International Journal of Fluid Mechanics Research, Vol.33, 2006, issue 6
Ioan Pop, Sujit Kumar Khan
THERMOPHORESIS AND HEAT GENERATION/ABSORPTION EFFECTS ON MAGNETOHYDRODYNAMIC FLOW OF JEFFREY FLUID OVER POROUS OSCILLATORY STRETCHING SURFACE WITH CONVECTIVE BOUNDARY CONDITIONS
Journal of Porous Media, Vol.21, 2018, issue 6
Nasir Ali, Sami Ullah Khan
Non-Newtonian Power Law Fluid Flow and Heat Transfer in a Porous Medium Over a Nonisothermal Stretching Sheet
International Journal of Fluid Mechanics Research, Vol.35, 2008, issue 5
K. V. Prasad, P. S. Datti
Radiation Effects on MHD Combined Convective Flow and Heat Transfer Past a Porous Stretching Surface
International Journal of Fluid Mechanics Research, Vol.37, 2010, issue 6
Swati Mukhopadhyay, Gorachand C. Layek, Rama Subba Reddy Gorla
A REVISED MODEL TO ANALYZE MHD FLOW OF MAXWELL NANOFLUID PAST A STRETCHING SHEET WITH NONLINEAR THERMAL RADIATION EFFECT
International Journal of Fluid Mechanics Research, Vol.46, 2019, issue 2
Cherlacola Srinivas Reddy, Besthapu Prabhakar, Shanker Bandari