Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 0.404 5-jähriger Impact-Faktor: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.v38.i2.80
pages 185-195

Nature of an Abnormal Dependence of the Rate of "Gas-Free" System Combustion on the Diameter

B. S. Seplyarskii
Institute of Structural Macrokinetics and Problems of Material Science, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russian Federation

ABSTRAKT

To explain experimental results that are abnormal from the viewpoint of the modern theory of combustion, a new convective-conductive model of gas-free system combustion was proposed. According to this model, convective heat transfer is caused by the flow of the layer of the melt of the easily melted reagent and the difference of pressures of impurity gases in front of and behind the melt layer; in such case, the velocity of melt penetration into the initial charge represents the velocity of combustion wave propagation. Assuming the limiting role of melt penetration into the initial charge, the basic parameters, affecting the velocity of combustion wave propagation, were identified. It was shown that, if a fine-dispersed component contains adsorbed gases released in the heating zone, then the decrease of the specimen diameter should lead to an increase of the combustion rate. In terms of the convective-conductive mechanism of combustion of the gas-free system, a whole number of experimental facts was explained that could not be explained by the existing theory of combustion based on the conductive mechanism of heat transfer.


Articles with similar content:

Convective Heat Transfer in the Processes of ''Gas-Free Combustion (by an Example of Ti + C System Combustion)
Heat Transfer Research, Vol.38, 2007, issue 2
S. G. Vadchenko, B. S. Seplyarskii
EXPERIMENTAL STUDY OF MICROTHRUSTER HEAT LOSS
International Journal of Energetic Materials and Chemical Propulsion, Vol.8, 2009, issue 4
Alexander. B. Kiskin, Vladimir Zarko, Oleg G. Glotov, Vladimir N. Simonenko, Lev K. Gusachenko
Improvements of pulse tube refrigerator revisited: application of field synergy principle
International Heat Transfer Conference 12, Vol.55, 2002, issue
Ming Wu, Ya-Ling He, Zhong-Qi Chen, Wen-Quan Tao
UNSTEADY COMBUSTION OF DUST/AIR MIXTURES IN AN ENCLOSED VOLUME
ICHMT DIGITAL LIBRARY ONLINE, Vol.7, 1995, issue
Konstantin G. Shkadinskii, Petr M. Krishenik
EXPERIMENTAL INVESTIGATION OF CHAR COMBUSTION KINETICS - CO/CO2 RATIO DURING COMBUSTION
International Heat Transfer Conference 10, Vol.3, 1994, issue
Mladen S. Ilic, Simeon N. Oka, M. Radovanovic