Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 0.404 5-jähriger Impact-Faktor: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volumen 51, 2020 Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2016007964
pages 383-402

CONJUGATE NATURAL CONVECTION IN AN INCLINED SQUARE POROUS ENCLOSURE WITH FINITE WALL THICKNESS AND PARTIALLY HEATED FROM ITS LEFT SIDEWALL

Sameh Elsayed Ahmed
Department of Mathematics, Faculty of Science, Abha, King Khalid University, Saudi Arabia; Department of Mathematics, Faculty of Science, South Valley University, Qena, Egypt
Ahmed Kadhim Hussein
College of Engineering, Mechanical Engineering Department, Babylon University, Babylon City, Hilla, Iraq
M. M. Abd El-Aziz
Department of Mathematics, Faculty of Sciences, South Valley University, Qena, Egypt
Sivanandam Sivasankaran
Department of Mathematics, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia

ABSTRAKT

The analysis of conjugate natural convection heat transfer in a square inclined enclosure filled with a porous medium and adjacent to the walls of finite thickness is investigated numerically using the finite volume method. While a uniform heat source is located on a part of the left inclined sidewall of the enclosure, the right inclined sidewall is maintained at a constant low temperature. The top and bottom walls are assumed adiabatic together with the remaining parts of the left inclined sidewall. Numerical computations are performed in wide ranges of the thermal conductivity ratio, enclosure inclination angle, dimensionless wall thickness, and dimensionless heat source length. The results are presented to give a parametric study showing the influence of these parameters on the flow and the heat transfer characteristics inside the enclosure. The results of the present work explain that the local Nusselt number of fluid phase increases when the thermal conductivity ratio increases, while the local Nusselt number along the heat source decreases as the thermal conductivity ratio increases. On the other hand, the average Nusselt number at the solid walls and fluids increases when the inclination angle increases from φ = 0° to φ = 45°, decreases slightly at φ = 60°, and decreases significantly when φ = 90°. Moreover, the fluid circulation intensity within the porous medium can be improved when considering a small wall thickness, high thermal conductivity ratio and when the heat source length increases. The results are compared with other published results and they found to be in good agreement.


Articles with similar content:

MIXED CONVECTION IN A LID-DRIVEN SQUARE CAVITY FILLED WITH NANOFLUIDS
Nanoscience and Technology: An International Journal, Vol.2, 2011, issue 4
M. Muthtamilselvan, R. Rakkiyappan
NUMERICAL STUDY OF A MIXED CONVECTION OF NANOFLUID IN A CAVITY FILLED WITH A POROUS MEDIUM FOR DIFFERENT LOCATIONS OF THE HEAT SOURCES
Second Thermal and Fluids Engineering Conference, Vol.41, 2017, issue
Ali Al-Zamily
NATURAL CONVECTION IN NANOFLUID-FILLED SQUARE CHAMBERS SUBJECTED TO LINEAR HEATING ON BOTH SIDES: A NUMERICAL STUDY
Heat Transfer Research, Vol.48, 2017, issue 9
S. Mazrouei Sebdani, P. Tajik, Ali Akbar Abbasian Arani, Mostafa Mahmoodi
A NUMERICAL STUDY OF NANOFLUID FORCED CONVECTION IN A POROUS CHANNEL WITH DISCRETE HEAT SOURCES
Journal of Porous Media, Vol.17, 2014, issue 6
Payam Rahim Mashaei, Seyed Mostafa Hosseinalipour
EFFECT OF HEATING LOCATION ON STABILITY OF NATURAL CONVECTION IN A SQUARE ENCLOSURE
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2012, issue
Djoubeir Debbah , Omar Kholai, Saadoun Boudebous