Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 0.404 5-jähriger Impact-Faktor: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2015010492
pages 157-176

NUMERICAL INVESTIGATION OF CONFINED SINGLE JET IMPINGING ON A DIMPLED TARGET SURFACE USING Al2O3−WATER NANOFLUIDS

Ping Li
Key Laboratory of Thermal Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, P. R. China
Yong Hui Xie
Shaanxi Engineering Laboratory of Turbomachinery and Power Equipment, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, China
Di Zhang
Key Laboratory of Thermal Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, P. R. China

ABSTRAKT

Jet impingement has been investigated widely owing to its high rates of convective heat transfer near the stagnation zone. Nanofluids, beyond the traditional working fluids, have great advantages in high-rate-heat flux removal. In the present work, a confined single jet impinging on a dimpled target surface with Al2O3−water nanofluids as a working fluid was investigated numerically for the first time. The effects of the jet Reynolds number Rej (10,000−20,000) and nanoparticle volume concentration Ø (0−5%) on the flow structures and heat transfer characteristics were investigated. The geometrical parameters were H/Dj = 6, Dj/D = 0.5, and δ/D = 0.2. The vorticity contours and streamlines of the confined domain, wall shear stress and pressure coefficient on the target surface, the pumping power, and the Nusselt number distributions were obtained. The results indicated that the effects of Rej and Ø on the flow field and heat transfer performance were magnified due to the interaction between them. A flow separation emerged near the dimple edge and got smaller with increase in Rej. The changes of three high vorticity magnitude zones in the confined domain depended on the variation of Rej and Ø. The regularity of change in the Nusselt number was complex and the physical properties of the working substance had great effect on it. Furthermore, the concept map of the flow structures of nanofluids in confined impingement and correlations have been derived from the parameter analysis.


Articles with similar content:

FLOW AND HEAT TRANSFER FOR JET IMPINGEMENT ARRAYS WITH LOCAL EXTRACTION
TSFP DIGITAL LIBRARY ONLINE, Vol.6, 2009, issue
Christopher J. Elkins, Terri B. Hoberg, Andrew J. Onstad, John K. Eaton
Micro and nano heat transfer
HEAT TRANSFER ENHANCEMENT IN FORCED CONVECTION LAMINAR TUBE FLOW BY USING NANOFLUIDS

ICHMT DIGITAL LIBRARY ONLINE, Vol.11, 2004, issue
Cong Tam Nguyen, Gilles C. Roy, Sidi El Becaye Maiga, Nicolas Galanis
Turbulent characteristics of surface attaching jet influenced by nozzle geometry
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2015, issue
M. S. Rahman, Mark F. Tachie
Operation of Gunn Diode Containing Two InP0.7As0.3−In0.4Ga0.6As Active Regions
Telecommunications and Radio Engineering, Vol.59, 2003, issue 1&2
Yu. V. Arkusha, E. D. Prokhorov, I. P. Storozhenko
PERFORMANCE ANALYSIS OF MICROCHANNEL COUNTER FLOW HEAT EXCHANGER USING DIFFERENT NANOFLUIDS
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
C K Umesh, Doddamani Hithaish, Saravanan Venkatesh, Bharath P