Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 0.404 5-jähriger Impact-Faktor: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018021728
pages 965-977

EXPERIMENTAL INVESTIGATION OF MIXED CONVECTION AND SURFACE RADIATION HEAT TRANSFER FROM PROTRUDING DISCRETE HEAT SOURCES MOUNTED ON A VERTICAL CHANNEL

Tapano Kumar Hotta
School of Mechanical Engineering, VIT University, Vellore 632014, India
Perni Sri Harsha
Department of Mechanical Engineering, IIT Madras, Chennai 600036, India
S. P. Venkateshan
Department of Mechanical Engineering, IIT Madras, Chennai 600036, India

ABSTRAKT

Three-dimensional steady-state mixed convection heat transfer experiments are conducted on five protruding discrete heat sources (aluminum) of different sizes arranged at various positions on a substrate board (bakelite), mounted on a vertical channel. The objective is to study the mixed convection and surface radiation heat transfer characteristics of these heat sources. It is seen that the temperature excess of the heat sources is largely influenced by their size, positioning on the substrate board, power generation rate, and channel aspect ratio. The aspect ratio studies are carried out to investigate the effect of the channel size on the cooling of discrete heat sources. It is seen that increasing the channel aspect ratio has a negligible effect on the heat transfer characteristic of heat sources, and a suitable aspect ratio has to be maintained to obtain the optimal temperature of heat sources. Experiments are carried out for both polished and black painted heat sources to study the contribution of surface radiation. The results suggest that radiation is significant as the heat transfer is enhanced by 10% from polished to black painted surfaces. Again, the larger heat source will have less heat dissipation rate per unit area and must be placed on the substrate bottom.


Articles with similar content:

Natural Convection Enhancement on Micro-Grooved Surfaces
Journal of Enhanced Heat Transfer, Vol.1, 1994, issue 3
John C. P. Huang, Ting Wang, Scott P. Mislevy
SIMULATION STUDIES OF MULTIMODE HEAT TRANSFER FROM A DISCRETELY HEATED VERTICAL CHANNEL
Heat Transfer Research, Vol.46, 2015, issue 11
C. Gururaja Rao, Shrikant Londhe
Passive directional daytime radiative cooling system
Second Thermal and Fluids Engineering Conference, Vol.14, 2017, issue
Yichen Shen, Evelyn N. Wang, Arny Leroy, Marin Soljačić, Bikram Bhatia, Melissa Gianello
SAM HEAT TRANSFER SURFACE FOULING BEHAVIOR AND FOULING FRACTAL CHARACTERISTICS
Proceedings of an International Conference on Mitigation of Heat Exchanger Fouling and Its Economic and Environmental Implications, Vol.0, 1999, issue
Qingfeng Yang, Zi-Qiu Shen, Jie Ding
THERMAL ANALYSIS OF RECTANGULAR FINS WITH DIFFERENT SHAPES OF LATERAL PERFORATIONS BY FORCED CONVECTION
Heat Transfer Research, Vol.49, 2018, issue 7
Kavita H. Dhanawade, Vivek K. Sunnapwar, Hanamant S. Dhanawade