Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 0.404 5-jähriger Impact-Faktor: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2015007089
pages 995-1017

SIMULATION STUDIES OF MULTIMODE HEAT TRANSFER FROM A DISCRETELY HEATED VERTICAL CHANNEL

Shrikant Londhe
Department of Mechanical Engineering, National Institute of Technology, Warangal - 506004 (A. P) India
C. Gururaja Rao
Department of Mechanical Engineering, National Institute of Technology, Warangal - 506004 (A. P) India

ABSTRAKT

Findings of certain parametric studies made on conjugate mixed convection with surface radiation from a discretely heated vertical channel are reported here. The vertical channel has three identical discrete heat sources flush-mounted in its left wall, with the right wall serving the purpose of a heat sink. The channel is considered to be of fixed height, with its width varied by altering the aspect ratio that is defined as the ratio of the height to the width of the channel. The cooling medium is air and the heat generated in the heat sources is dissipated by a combination of mixed convection and radiation after its percolation through the channel wall. The fluid flow and heat transfer equations are considered without making the conventional boundary layer approximations and are solved using the finite volume method coupled with stream function−vorticity formulation. A computer code is prepared to solve the problem. The influence of parameters like the modified Richardson number, surface emissivity, thermal conductivity, and aspect ratio on pertinent results has been analyzed. The exclusive effect of radiation has been explored and the roles taken up by mixed convection and radiation in channel heat dissipation are investigated. The studies elucidate the prominence radiation assumes in the present kind of problems in different regimes of mixed convection.


Articles with similar content:

STUDY OF CONVECTIVE HEAT TRANSFER IN A SQUARE CAVITY FILLED WITH A VISCOPLASTIC FLUID BY TAKING INTO ACCOUNT VISCOUS DISSIPATION
Heat Transfer Research, Vol.44, 2013, issue 7
Youb Khaled Benkahla, Nabila Labsi, Abdelkader Boutra
The Effect of Radiative Heat Transfer on Slip Flow through Parallel-Plate Microchannels
International Heat Transfer Conference 15, Vol.18, 2014, issue
Ali Kosar, Rahim Zamanian, Mostafa Shojaeian
Numerical Study of Natural Convection Heat Transfer in Converging Channels
International Heat Transfer Conference 12, Vol.12, 2002, issue
Antonio Viedma, B. Zamora , Antonio S. Kaiser
CONTROL OF CONVECTIVE HEAT TRANSFER BETWEEN TWO WALLS
ICHMT DIGITAL LIBRARY ONLINE, Vol.13, 2008, issue
Hassen Abbassi
NUMERICAL SIMULATIONS OF 2D STEADY LAMINAR NATURAL CONVECTION FLOWS AROUND ONE OR SEVERAL ENCLOSED THIN PLATES
International Heat Transfer Conference 11, Vol.7, 1998, issue
L. Foucher , J. P. Petit