Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 0.404 5-jähriger Impact-Faktor: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.v35.i12.50
10 pages

Experimental and Computational Investigation of the Hydrodynamics and Heat Transfer in a Flat Channel of Variable Width for Smooth and Intensified Surfaces

R. Banker
General Electric CR&D, USA
Mikhail Ya. Belenkiy
JSC "I. I. Polzunov Central Boiler and Turbine Institute" (NPO TsKTI), St. Petersburg, 195257, Russia
Mikhail Gotovskii
I. I. Polzunov Scientific and Development Association on Research and Design of Power Equipment (NPO TsKTI), 3/6 Atamanskaya Str., St. Petersburg, 191167, Russia
B. S. Fokin
JSC "I. I. Polzunov Central Boiler and Turbine Institute" (NPO TsKTI), St. Petersburg, 195257, Russia

ABSTRAKT

We present the results of experimental and computational investigation of the resistance and heat transfer in a flat channel of variable width with converging and diverging flows at rather small convergence (divergence) angles. The results were obtained for both smooth surfaces and surfaces with intensification by dimples. It is showed experimentally that for long channels, laminarization and flow instability effects appear even at angles of 1-2°. But there is a noticeable influence only on the resistance coefficient, whereas the behavior of heat transfer is almost the same as in the absence of acceleration for both smooth and intensified surface. The numerical analysis of convective heat transfer in a narrow converging channel with a package of 15 conical dimples on one of its sides generally confirmed the data obtained in physical experiments on the advanced increase in heat transfer as compared to hydraulic resistance. Vortex-type flow synchronization effect in dimples is established.


Articles with similar content:

HEAT TRANSFER IN HELICAL CHANNELS WITH STRONG CURVATURE
International Heat Transfer Conference 9, Vol.3, 1990, issue
Povilas Poskas, Jurgis Vilemas
CONVERGENCE ANGLES EFFECT ON HEAT TRANSFER CHARACTERISTICS IN A WEDGED DUCT WITH DIMPLES/PROTRUSIONS
Heat Transfer Research, Vol.48, 2017, issue 14
Lei Luo, Songtao Wang, Wei Du, Zhiqi Zhao, Fengbo Wen
Numerical investigation for flow and heat transfer in longitudinal-flow tube bundle of shell-and-tube heat exchanger
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
Y.S. Wang, Zhichun Liu, Wei Liu, Suyi Huang
FLOW AND HEAT TRANSFER IN HYDROPHOBIC MICRO PIN FINS WITH DIFFERENT CONTACT ANGLES
Heat Transfer Research, Vol.50, 2019, issue 8
Z. G. Liu, C. W. Zhang, G. L. Jiang, Ning Guan
THERMOHYDRAULIC CHARACTERISTICS OF A KNURLED MICROCHANNEL HEAT SINK IN SINGLE PHASE REGIME
3rd Thermal and Fluids Engineering Conference (TFEC), Vol.24, 2018, issue
Amitav Tikadar, Ruixian Fang, Jamil A. Khan, Karim Egab, Saad K Oudah