Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 0.404 5-jähriger Impact-Faktor: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumen 51, 2020 Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2017018876
pages 1165-1178


Jinhu Zhao
School of Mathematics and Statistics, Fuyang Normal College, Fuyang 236037, Anhui, China
Liancun Zheng
School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
Xinxin Zhang
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Energy Saving and Emission Reduction for Metallurgical Industry, University of Science and Technology Beijing, Beijing 100083, China
Fawang Liu
School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld. 4001, Australia


The fractional constitutive laws are introduced into the study of mixed convection heat transfer of viscoelastic fluid along an inclined plate. Nonlinear fractional boundary layer governing equations are formulated and solved by a finite difference algorithm combined with the shifted Grünwald–Letnikov formula. The results show that the inclination angle, Prandtl number, and the temperature fractional derivative parameter have remarkable impacts on both temperature and velocity fields, while the effect of the velocity fractional derivative parameter on temperature is ignorable. With decrease of the inclination angle and Prandtl number, the temperature profile rises and the thermal boundary layer becomes thicker significantly. The average Nusselt number increases remarkably with the augmentation of the temperature fractional derivative parameter. For larger velocity fractional derivative parameter, the intersections of velocity profiles demonstrate the strengthened viscoelasticity of the fluid. The average skin friction coefficient increases slowly first and then declines dramatically with the rise of the velocity fractional derivative parameter.