Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 0.404 5-jähriger Impact-Faktor: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volumen 51, 2020 Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018021519
pages 1559-1585

TURBULENT DECAYING SWIRLING FLOW IN A PIPE

V. Aghakashi
Center of Excellence in Energy Conversion (CEEC), School of Mechanical Engineering, Sharif University of Technology, Tehran, 11155-9567, Iran
Mohammad Hassan Saidi
Center of Excellence in Energy Conversion (CEEC), School of Mechanical Engineering, Sharif University of Technology, P.O. Box 11155-9567, Tehran, Iran

ABSTRAKT

In this work, a solution is applied to investigate the heat transfer characteristics in a pipe with turbulent decaying swirling flow by using the boundary layer integral scheme. The governing equation is solved using the forth-order Runge-Kutta scheme resulting in thermal boundary-layer thickness and dimensionless heat transfer coefficient, namely, the Nusselt number. Both forced- and free-vortex profiles are considered for the tangential velocity component. A comparison of the results obtained for the Nusselt number with available experimental data shows that this scheme has good capability in predicting the heat transfer parameters of swirling flow especially in the entrance region of a pipe. The results of the present work specify that in swirling flow, the forced-vortex velocity profile is more accurate in predicting the heat transfer coefficient as compared with the free-vortex one. Also, the effects of the inlet Reynolds number, inlet swirl intensity, and of the Prandtl number on the thermal boundary-layer thickness and Nusselt number are studied, and it is realized that the variation of these two parameters depends on the inlet Reynolds number, inlet swirl intensity, and the Prandtl number. The results show that increasing the inlet swirl intensity has a strong increasing effect on the heat transfer rate.


Articles with similar content:

TURBULENT HEAT TRANSFER IN A SWIRL FLOW DOWNSTREAM OF AN ABRUPT PIPE EXPANSION
International Heat Transfer Conference 7, Vol.6, 1982, issue
Donald M. McEligot, M. A. Habib
NUMERICAL STUDY OF A VARIABLE POROSITY POROUS LAYER IN A CHANNEL WITH INSULATED WALLS
Computational Thermal Sciences: An International Journal, Vol.3, 2011, issue 5
Kurosh Sedighi, Arman Hasanpour, Mousa Farhadi
PREDICTING THE COOLANT FLOW AND HEAT TRANSFER IN RADIAL TURBINE BLADES
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
Mozaffar Ali Mehrabian, Aidin Panahi
Turbulence Statistics in a Fully Developed Rotating Pipe Flow
Journal of Enhanced Heat Transfer, Vol.12, 2005, issue 3
Miryem Ould-Rouis, Guy Lauriat, Amir-Ali Feiz
NUMERICAL ANALYSIS OF ENHANCED HEAT TRANSFER IN DEVELOPING LAMINAR PIPE FLOW USING DECAYING SWIRL AT THE INLET
Journal of Enhanced Heat Transfer, Vol.23, 2016, issue 4
Mohammad O. Hamdan