Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 0.404 5-jähriger Impact-Faktor: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.v32.i1-3.70
8 pages

Experimental and Theoretical Investigation of the Process of Initiation of Vapor Explosion on a Solid Semispherical Model. Part 2. Experiment

Vasilii V. Glazkov
Moscow Power Engineering Institute (Technical University), Russia
Vyacheslav G. Zhilin
Incorporated Institute of High Temperatures (IIHI) of the Russian Academy of Science, 13/19 Igorskaya str., Moscow, Russia
Yurii P. Ivochkin
Moscow Power Engineering Institute; and Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
V. S. Igumnov
Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
Oleg A. Sinkevich
Science Technological Center of Associated Institute for High Temperature, Russian Academy of Science and Moscow Power Engineering Institute (Technical University), Russia
Vladimir R. Tsoi
Elektrogorsk Research and Engineering Center on Nuclear Plants Safely (ENIT's),Bezymyannaya ul., 6, Elektrogorsk, Moscowoblas t, 142530, Russia
V. G. Shvets
Elektrogorsk Scientific-Research Center, Elektrogorsk, Russia

ABSTRAKT

On the basis of the analysis of the experimental data, a physical model of the initiation of a vapor explosion has been developed. The following stages of the process of an explosion-like transition from a film to a bubble boiling on a semi-spherical model immersed in water are calculated: the incipience of the Kelvin-Helmholtz instability of a vapor film; growth of the instability amplitude and the collision of the crests of liquid waves with a surface; extension of the region of collisions due to the propagation of capillary waves generated in recoil; the cooling of the model of the temperature below the critical one and collapse of the vapor film; superheating of the surface layer of liquid that came in contact with the model and the expansion of the formed vapor layer resulting in the generation of a descending liquid jet. The estimates obtained demonstrate the qualitative and quantitative agreement with experimental results.


Articles with similar content:

Fluctuational Origination of Bubbles in Steady Regimes of Vapor Generation
Heat Transfer Research, Vol.32, 2001, issue 4-6
Pavel A. Pavlov
Stability of an Interface in a Liquid-Vapor System
Heat Transfer Research, Vol.33, 2002, issue 3&4
Pavel A. Pavlov, S. N. Syromyatnikov
INTERFACE DYNAMICS AND HEAT TRANSFER IN EVAPORATING LIQUID FILMS ON MICROSTRUCTURED SURFACES
International Heat Transfer Conference 13, Vol.0, 2006, issue
Tatiana Gambaryan-Roisman, Peter Stephan
THE BEHAVIOR OF WETTED AREA AND CONTACT ANGLE RIGHT AFTER LIQUID-WALL CONTACT IN SATURATED AND SUBCOOLED POOL BOILING
International Heat Transfer Conference 13, Vol.0, 2006, issue
Yasuo Koizumi, Hiroyasu Ohtake
TEST-CASE NO 17: DAM-BREAK FLOWS ON DRY AND WET SURFACES (PN, PA, PE)
Multiphase Science and Technology, Vol.16, 2004, issue 1-3
Stephane Vincent, Jean-Paul Caltagirone