Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 0.404 5-jähriger Impact-Faktor: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volumen 51, 2020 Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2018024625
pages 1531-1538

ISOFLUX NUSSELT NUMBER EXPRESSION FOR COMBINED POISEUILLE AND COUETTE FLOW CAPTURING ASYMMETRY AND SLIP

Daniel Kane
Tufts University, 200 College Ave., Medford, MA 02138
Marc Hodes
Tufts University, 200 College Ave., Medford, MA 02138

ABSTRAKT

We analytically consider steady, fully-developed, laminar thermal transport between isoflux, parallel plates. Hydrodynamic slip length, thermal slip length, and heat flux are prescribed at each plate. A combined Poiseuille and Couette flow is driven by an imposed pressure gradient and a moving plate. A Nusselt number expression is presented as a function of dimensionless forms of the aforementioned flow and thermal parameters. The limiting cases of Poiseuille flow with and without slip and Couette flow without slip agree with existing expressions. The expressions for combined Poiseuille and Couette flow with and without slip and Couette flow with slip are new.

REFERENZEN

  1. Colin, S., Gas Microflows in the Slip Flow Regime: a Critical Review on Convective Heat Transfer, J. Heat Transf, vol. 134, p. 020908,2012.

  2. Davis, A.M.J. and Lauga, E., Hydrodynamic Friction of Fakir-Like Superhydrophobic Surfaces, J. Fluid Mech., vol. 661, pp. 402-411,2010.

  3. Enright, R., Hodes, M., Salamon, T., andMuzychka, Y., IsofluxNusselt Number and Slip Length Formulae for Superhydrophobic Microchannels, J. Heat Transf, vol. 136, pp. 1-9,2014.

  4. Hodes, M., Kirk, T., Karamanis, G., and MacLachlan, S., Effect of Thermocapillary Stress on Slip Length for a Channel Textured with Parallel Ridges, J. Fluid Mech., vol. 814, pp. 301-324,2017.

  5. Jiji, L.M., Heat Convection, New York: Springer, 2009.

  6. Kays, W.M. and Crawford, M.E., Convective Heat and Mass Transfer, New York: McGraw-Hill Education, 1993.

  7. Kennard, E.H., Kinetic Theory of Gases, New York: McGraw-Hill, 1938.

  8. Kirk, T.L., Hodes, M., and Papageorgiou, D.T., Nusselt Numbers for Poiseuille Flow over Isoflux Parallel Ridges Accounting for Meniscus Curvature, J. Fluid Mech, vol. 811, pp. 315-349,2017.

  9. Lam, L.S., Melnick, C., Hodes, M., Ziskind, G., and Enright, R., Nusselt Numbers for Thermally Developing Couette Flow with Hydrodynamic and Thermal Slip, J. Heat Transf., vol. 136, no. 5,2014.

  10. Lauga, E. and Stone, H.A., Effective Slip in Pressure-Driven Stokes Flow, J. Fluid Mech., vol. 489, pp. 55-77,2003.

  11. Maxwell, J.C., The Scientific Papers of James Clerk Maxwell, Cambridge, U.K.: Cambridge University Press, 1890.

  12. Navier, C.L., Memoire sur les Lois du Movement des Fluids, Memoires de l 'Academie Royale des Sciences de l 'Institut de France, vol. 6, pp. 389-440,1823.

  13. Nield, D., Forced Convection in a Parallel Plate Channel with Asymmetric Heating, Int. J. Heat Mass Transf., vol. 47, pp. 5609-5612,2004.

  14. Nield, D., Erratum to Forced Convection in a Parallel Plate Channel with Asymmetric Heating, Int. J. Heat Mass Transf., vol. 51, p. 2108,2008.

  15. Philip, J.R., Flows Satisfying Mixed No-Slip and No-Shear Conditions, J. Appl. Math. Phys., vol. 23, pp. 353-372,1972a.

  16. Philip, J.R., Integral Properties of Flows Satisfying Mixed No-Slip and No-Shear Conditions, J. Appl. Math. Phys, vol. 23, pp. 960-968,1972b.

  17. Shah, R.K. and London, A.L., Laminar Flow Forced Convection in Ducts, Cambridge, MA: Academic Press, 1978.

  18. Ybert, C., Barentin, C., Cottin-Bizonne, C., Joseph, P., and Bocquet, L., Achieving Large Slip with Superhydrophobic Surfaces: Scaling Laws for Generic Geometries, Phys. Fluids, vol. 19, p. 3601,2007.


Articles with similar content:

The Hazen-Dupuit-Darcy Model for Investigation of Viscous Dissipation Effects on Thermal Development of a Liquid-Metal Flow in a Porous Medium: Circular Tube with Uniform Wall Temperature
Heat Transfer Research, Vol.35, 2004, issue 3&4
Kamel Hooman, A. A. Ranjbar-Kani
EFFECT OF THERMOCAPILLARY STRESS ON SLIP LENGTH FOR POISEUILLE FLOW OVER PARALLEL RIDGES
First Thermal and Fluids Engineering Summer Conference, Vol.11, 2015, issue
Marc Hodes, Scott MacLachlan, Lisa Steigerwalt Lam, Georgios Karamanis
HARTMANN FLOW AND HEAT TRANSFER OF COUPLE STRESS FLUID IN A POROUS MEDIUM BETWEEN TWO PARALLEL PLATES WITH PERIODIC SUCTION AND INJECTION
Computational Thermal Sciences: An International Journal, Vol.8, 2016, issue 3
Odelu Ojjela, N. Naresh Kumar
HEAT TRANSFER CHARACTERISTICS OF AN ELECTROOSMOTIC FLOW OF VISCOELASTIC FLUID IN SLIT MICROCHANNEL
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2017, issue
Suman Chakraborty, Prakash Goswami
About a Two-Component Laminar Boundary Layer a on Permeable Plate
Heat Transfer Research, Vol.33, 2002, issue 1&2
A. I. Zhitenev, S. V. Faleev, V. V. Faleev, A. E. Blazhkov