Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 0.404 5-jähriger Impact-Faktor: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.v41.i3.40
pages 247-263

Numerical Resolution of Conjugate Heat Transfer Problem in a Parallel-Plate Micro-Channel

Yassine Kabar
Université de Jijel, Laboratoire d'Energétique Appliquée et des Matériaux, Faculté des Sciences et de la Technologie, BP. 96, 18000 Jijel, Algeria
Mourad Rebay
University of Reims Champagne-Ardenne GRESPI / Faculte des Sciences PB 1039, 51687 Reims, France
Mahfoud Kadja
Constantinel University, Laboratory of Applied Energetics and Pollution, Faculty of Technology Sciences, Department of Mechanical Engineering, Constantine 25000, Algeria
Colette Padet
University of Reims Champagne-Ardenne, GRESPI/Laboratoire de Thermomécanique, Faculté des Sciences PB1039, 51687 Reims, France

ABSTRAKT

The present paper deals with the characterization of the conjugated two-dimensional steady-state heat transfer problem in two parallel-plate micro-channel heat sinks. The fluid is assumed to be incompressible and with constant properties. Simultaneous hydrodynamic and thermal developing region is taken into consideration here. Axial conduction is also taken into account. An analysis is performed for constant wall temperature at the outer surfaces of the plates. The heat wave generated at these surfaces is crossing through the plates to reach the interface with the fluid in the micro-channel. Due to the fact that channel height (H) is of the same order of dimension of the plate thickness (E) in the micro-channel, the conduction in the plate cannot be assumed negligible. Therefore, the convective heat transfer in a micro-channel is conjugated with the conduction in the solid plates. The two-dimensional Navier-Stokes equations and the energy equation are solved by the finite-control-volume method. Detailed temperature profiles in the fluid and the solid, the fluid bulk temperature and the heat flux distributions on the fluid-solid interface are provided. The effects of the plate thickness and the solid to fluid thermal conductivities ratio (K = ks/kf) are studied for a water flow with a Reynolds number Re = 100. The results of different simulations are analyzed, and the axial distributions of the Nusselt number are deduced for each case. The results show that viscous heating of the fluid can significantly influence the heat transfer in the micro-channel heat sink. The thickness plate (E) may have an influence on both thermal developing length and the asymptotic Nusselt number value which corresponds to the fully developed flow. The bulk fluid temperature is shown to vary in a nonlinear form along the flow direction.


Articles with similar content:

NUMERICAL RESOLUTION OF CONJUGATE HEAT TRANSFER PROBLEM IN PARALLELPLATE MICRO-CHANNEL
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
Colette Padet, Yassine Kabar, Mourad Rebay, Mahfoud Kadja
About a Two-Component Laminar Boundary Layer a on Permeable Plate
Heat Transfer Research, Vol.33, 2002, issue 1&2
A. I. Zhitenev, S. V. Faleev, V. V. Faleev, A. E. Blazhkov
STUDY OF THE EFFECTS OF CONDUCTION IN THE WALL ON THE SINGLE-PHASE FORCED CONVECTION IN MICROCHANNELS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2014, issue
Rachid Bessaih, Yassine Demagh, Yassine Kabar, Mourad Rebay
Forced Convection of a Power-Law Fluid in a Porous Channel—Integral Solutions
Journal of Porous Media, Vol.2, 1999, issue 1
Hamid Hadim, G. Chen
HEAT TRANSFER OF NON-NEWTONIAN FLUID FLOW IN A CHANNEL LINED WITH POROUS LAYERS UNDER THERMAL NONEQUILIBRIUM CONDITIONS
Journal of Porous Media, Vol.13, 2010, issue 3
Abbas Abbassi, P. Forooghi, M. Abkar, M. M. Aghdam