Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 0.404 5-jähriger Impact-Faktor: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2016010264
pages 559-574

NUMERICAL INVESTIGATION OF WALL CURVATURE EFFECTS ON HEAT TRANSFER AND FILM COOLING EFFECTIVENESS

A. Shalchi-Tabrizi
Aerospace Engineering Department, Sharif University of Technology, Tehran, I.R. Iran
M. Taiebi-Rahni
Aerospace Engineering Department, Sharif University of Technology, Tehran, I.R. Iran
Gongnan Xie
Department of Mechanical and Power Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, China
Masoud Asadi
Department of Mechanical Engineering, Azad Islamic University Science and Research Branch, Tehran, Iran

ABSTRAKT

In this research, the problems of adiabatic film-cooling the flat, convex, and concave surfaces are investigated numerically. Two different radii of curvature and one row of vertical injection holes are considered. The Navier−Stokes equations are solved using a fine nonuniform multiblock staggered curvilinear grid and the SIMPLE-based finite volume method. The blowing rates are 0.5 and 1.0 and the mainstream Reynolds number is 10,000. The obtained results indicated that at a low blowing ratio, the cooling effectiveness enhances over the convex surface and reduces over the concave surface compared to the flat surface case. In comparison with the low blowing ratio, the curvature effects at a high blowing ratio seem to be less pronounced. At the high blowing ratio, the effectiveness is not greatly influenced by the surface curvature.


Articles with similar content:

Effects of Surface Geometry and Blowing Ratio on Film Cooling Performance at Airfoil Trailing Edge Investigated by Using Large Eddy Simulation
International Heat Transfer Conference 15, Vol.20, 2014, issue
Akira Murata, Kaoru Iwamoto, Ena Mori
FILM-COOLING CHARACTERISTICS OF UPSTREAM RAMP ENHANCED TURBINE BLADE SURFACE COOLING
Heat Transfer Research, Vol.48, 2017, issue 11
Paresh Halder, Jun-Hee Kim, Abdus Samad, Kwang-Yong Kim
CONVERGENCE ANGLES EFFECT ON HEAT TRANSFER CHARACTERISTICS IN A WEDGED DUCT WITH DIMPLES/PROTRUSIONS
Heat Transfer Research, Vol.48, 2017, issue 14
Lei Luo, Songtao Wang, Wei Du, Zhiqi Zhao, Fengbo Wen
FLOW AND TEMPERATURE FIELDS FOLLOWING INJECTION OF A JET NORMAL TO A CROSS STREAM
International Heat Transfer Conference 6, Vol.5, 1978, issue
V. L. Eriksen, Richard J. Goldstein, J. W. Ramsey
FILM COOLING EFFECT OF THE LEAKAGE THROUGH THE SEAM OF ADJACENT TURBINE BLADE PLATFORMS
International Heat Transfer Conference 13, Vol.0, 2006, issue
M. Y. Jabbari, E. J. Thor, Richard J. Goldstein