Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 0.404 5-jähriger Impact-Faktor: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumes:
Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.v41.i8.60
pages 867-887

An Experimental Study of Airfoil and Endwall Heat Transfer on a Linear Turbine Blade Cascade — Secondary Flow and Surface Roughness Effects

Marco Lorenz
Institut fuer Thermische Stroemungsmaschinen, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
Achmed Schulz
Institut fuer Thermische Stroemungsmaschinen (ITS), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
Hans-Jorg Bauer
Institut fuer Thermische Stroemungsmaschinen (ITS), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany

ABSTRAKT

The present study is part of a comprehensive heat transfer analysis on a highly loaded turbine blade and endwall with varying surface roughness. In this paper, a smooth airfoil with an endwall of varying surface roughness is considered in order to investigate secondary flow and surface roughness effects on airfoil and endwall heat transfer. The measurements have been conducted in a linear cascade with low pressure blades at several freestream turbulence levels (Tu1 = 1.4% to 10.1%) and varying inlet Reynolds numbers (Re1,c = 50,000 to 250,000). Aerodynamic measurements have been carried out on the airfoil at midspan and complemented by oil paint visualization on airfoil and platform. Heat transfer on both the full-span suction and pressure surfaces of the airfoil and endwall is shown for smooth surfaces. Moreover, rough endwall surfaces are compared to the smooth reference case showing a maximum increase of local heat transfer of up to 240% due to surface roughness.


Articles with similar content:

AN EXPERIMENTAL STUDY OF AIRFOIL AND ENDWALL HEAT TRANSFER IN A LINEAR TURBINE BLADE CASCADE − SECONDARY FLOW AND SURFACE ROUGHNESS EFFECTS
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
Achmed Schulz, Hans-Jorg Bauer, Marco Lorenz
Experimental Investigation on the Performances of a Transonic Turbine Blade Cascade for Varying Incidence Angles
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 1985, issue
G. Benvenuto, F. Pittaluga
NUMERICAL SIMULATION OF MACH NUMBER AND ANGLE OF ATTACK INFLUENCE ON REGIMES OF TRANSONIC TURBULENT FLOWS OVER AIRFOILS
TsAGI Science Journal, Vol.43, 2012, issue 1
Oleg Borisovich Polevoy, Oleksander Anatolyevich Prykhodko, Anton Oleksandrovich Pylypenko
LARGE EDDY SIMULATION OF FREE-STREAM TURBULENCE EFFECTS ON HEAT TRANSFER TO A HIGH PRESSURE TURBINE CASCADE
TSFP DIGITAL LIBRARY ONLINE, Vol.6, 2009, issue
Sanjiva K. Lele, Rathakrishnan Bhaskaran
OBLIQUE SHOCK-WAVE INCIDENCE ON A PLATE (TWO-DIMENSIONAL FLOW)
Visualization of Mechanical Processes: An International Online Journal, Vol.8, 2018, issue 1
Volf Ya. Borovoy, Arkadii Sergeyevich Skuratov, Ivan Vladimirovich Egorov