Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Heat Transfer Research
Impact-faktor: 0.404 5-jähriger Impact-Faktor: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN Druckformat: 1064-2285
ISSN Online: 2162-6561

Volumen 51, 2020 Volumen 50, 2019 Volumen 49, 2018 Volumen 48, 2017 Volumen 47, 2016 Volumen 46, 2015 Volumen 45, 2014 Volumen 44, 2013 Volumen 43, 2012 Volumen 42, 2011 Volumen 41, 2010 Volumen 40, 2009 Volumen 39, 2008 Volumen 38, 2007 Volumen 37, 2006 Volumen 36, 2005 Volumen 35, 2004 Volumen 34, 2003 Volumen 33, 2002 Volumen 32, 2001 Volumen 31, 2000 Volumen 30, 1999 Volumen 29, 1998 Volumen 28, 1997

Heat Transfer Research

DOI: 10.1615/HeatTransRes.2019026068
pages 1205-1229


Vikash Kumar Singh Chauhan
Department of Mechanical Engineering, National Institute of Technology, Manipur, Imphal, Manipur 795004, India
Dushyant Singh
Department of Mechanical Engineering, National Institute of Technology, Manipur, Imphal, Manipur 795004, India
Dr. Singh works in a general area of fluid flow and heat transfer with a focus on understanding the flow physics and heat transfer characteristics of the complex problem in advanced industry problem, along with experimentally and numerically of interest.


The present numerical study describes the phenomena of impingement cooling of a heated fl at surface by air and water mist-jet for mass loading fraction ƒ = 0.003−0.024 at Redhyd = 4500 and h/d = 5. A multiphase two-dimensional axisymmetric, incompressible and turbulent flow is considered in the present study. The results obtained using the standard k−ε, standard k−ω, RNG k−ε, realizable k−ε, and SST k−ω turbulence models were analyzed and discussed. The predictions of the local heat transfer coefficient show that the realizable k−ε turbulence model predicts heat transfer results better than other turbulence models. The comparative study was performed to select a suitable multiphase model among the volume of fluid, mixture, and Eulerian models. The Eulerian multiphase model predicts heat transfer from mist-jet impingement on a flat surface much better than the volume of fluid and mixture multiphase models. Normalized axial and radial velocities of the continuous and dispersed phase are presented to understand the fluid flow. The present numerical study also discusses turbulent kinetic energy near the nozzle exit and volume fraction over the heated flat surface.


  1. Agrawal, C., Lyons, O.F., Kumar, R., Gupta, A., and Murray, D.B., Rewetting of a Hot Horizontal Surface through Mist Jet Impingement Cooling, Int. J. Heat Mass Transf., vol. 58, nos. 1-2, pp. 188-196, 2013.

  2. Chan, W.T. and Ko, N.W.M., Coherent Structures in the Outer Mixing Region of Annular Jets, J. Fluid Mech., vol. 89, no. 3, pp. 515-533, 1978.

  3. Downs, S. and James, E.H., Jet Impingement Heat Transfer-A Literature Survey, in ASME, AIChE and ANS, 24th National Heat Transf. Conf. Exhibition, 1987.

  4. Dutta, R., Dewan, A., and Srinivasan, B., Comparison of Various Integration to Wall, no. ITW RANS Models for Predicting Turbulent Slot Jet Impingement Heat Transfer, Int. J. Heat Mass Transf., vol. 65, pp. 750-764, 2013.

  5. Feng, L.H., Wang, J.J., and Pan, C., Proper Orthogonal Decomposition Analysis of Vortex Dynamics of a Circular Cylinder under Synthetic Jet Control, Phys. Fluids, vol. 23, no. 1, p. 014106, 2011.

  6. Fu, W.S. and Yang, G.C., Influence of Droplets' Trajectories and Size Distribution on Heat Transfer from a Wedge in an Air- Water Mist Flow, Numer. Heat Transf., vol. 16, no. 2, pp. 155-174, 1989.

  7. Graham, K.M. and Ramadhyani, S., Experimental and Theoretical Studies of Mist Jet Impingement Cooling, J. Heat Transf., vol. 118, no. 2, pp. 343-349, 1996.

  8. Horacek, B., Kiger, K.T., and Kim, J., Single Nozzle Spray Cooling Heat Transfer Mechanisms, Int. J. Heat Mass Transf., vol. 48, no. 8, pp. 1425-1438, 2005.

  9. Hrycak, P., Heat Transfer from Impinging Jets. A Literature Review, Newark, NJ: New Jersey Institute of Technology, 1981.

  10. Jambunathan, K., Lai, E., Moss, M.A., and Button, B.L., A Review of Heat Transfer Data for Single Circular Jet Impingement, Int. J. Heat Fluid Flow, vol. 13, no. 2, pp. 106-115, 1992.

  11. Jia, W. and Qiu, H.H., Experimental Investigation of Droplet Dynamics and Heat Transfer in Spray Cooling, Exp. Therm. Fluid Sci., vol. 27, no. 7, pp. 829-838, 2003.

  12. Kanamori, A., Hiwada, M., Mimatsu, J., Sugimoto, H., and Oyakawa, K., Control of Impingement Heat Transfer Using Mist, J. Therm. Sci. Technol., vol. 4, no. 2, pp. 202-213, 2009.

  13. Kheirabadi, A.C. and Groulx, D., Cooling of Server Electronics: A Design Review of Existing Technology, Appl. Therm. Eng., vol. 105, pp. 622-638, 2016.

  14. Kim, J., Spray Cooling Heat Transfer: The State of the Art, Int. J. Heat Fluid Flow, vol. 28, no. 4, pp. 753-767, 2007.

  15. Li, X., Gaddis, J.L., and Wang, T., Modeling of Heat Transfer in a Mist/Steam Impinging Jet, J. Heat Transf., vol. 123, no. 6, pp. 1086-1092, 2001.

  16. Martin, H., Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces, Adv. Heat Transf., vol. 13, pp. 1-60, 1977.

  17. Pais, M.R., Chow, L.C., and Mahefkey, E.T., Surface Roughness and Its Effects on the Heat Transfer Mechanism in Spray Cooling, J. Heat Transf., vol. 114, no. 1, pp. 211-219, 1992.

  18. Pakhomov, M.A. and Terekhov, VI., Enhancement of an Impingement Heat Transfer between Turbulent Mist Jet and Flat Surface, Int. J. Heat Mass Transf., vol. 53, nos. 15-16, pp. 3156-3165, 2010.

  19. Pakhomov, M.A. and Terekhov, VI., The Effect of Confinement on the Flow and Turbulent Heat Transfer in a Mist Impinging Jet, Int. J. Heat Mass Transf., vol. 54, nos. 19-20, pp. 4266-4274, 2011.

  20. Patankar, S., Numerical Heat Transfer and Fluid Flow, Boca Raton, FL: CRC Press, 1980.

  21. Patte-Rouland, B., Danlos, A., and Rouland, E., Measurement of the 3D Turbulent Flow Field of an Annular Jet and Proper Orthogonal Decomposition Analysis, in 3rd Int. Conf. Fluid Mechanics Heat Mass Transfer, FLUIDS-HEAT'12, pp. 57-62, 2012.

  22. Quinn, C., Murray, D.B., and Persoons, T., Heat Transfer Behavior of a Dilute Impinging Air-Water Mist Jet at Low Wall Temperatures, Int. J. Heat Mass Transf., vol. 111, pp. 1234-1249, 2017.

  23. Singh, D., Premachandran, B., and Kohli, S., Numerical Simulation of the Jet Impingement Cooling of a Circular Cylinder, Numer. Heat Transf., Part A: Applications, vol. 64, no. 2, pp. 153-185, 2013a.

  24. Singh, D., Premachandran, B., and Kohli, S., Experimental and Numerical Investigation of Jet Impingement Cooling of a Circular Cylinder, Int. J. Heat Mass Transf., vol. 60, pp. 672-688, 2013b.

  25. Sozbir, N., Chang, Y.W., and Yao, S.C., Heat Transfer of Impacting Water Mist on High Temperature Metal Surfaces, J. Heat Transf., vol. 125, no. 1, pp. 70-74, 2003.

  26. Vasquez, S., A Phase Coupled Method for Solving Multiphase Problems on Unstructured Mesh, in ASME 200 Fluids Engineering Division Summer Meeting, 2000.

  27. Vouros, A., Vouros, A., and Panidis, T., Experimental Study of a Water-Mist Jet Issuing Normal to a Heated Flat Plate, Thermal Sci., vol. 20, no. 2, pp. 473-482, 2016.

  28. Yang, J., Chow, L.C., and Pais, M.R., Nucleate Boiling Heat Transfer in Spray Cooling, J. Heat Transf., vol. 118, no. 3, pp. 668-671, 1996.