Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Porous Media
Impact-faktor: 1.49 5-jähriger Impact-Faktor: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Druckformat: 1091-028X
ISSN Online: 1934-0508

Volumes:
Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v8.i5.100
pages 541-549

Mixed Convection Heat and Mass Transfer with Thermal Radiation in a Non-Darcy Porous Medium

M. K. Partha
Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
G. P. Raja Sekhar
Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur, 721302

ABSTRAKT

Similarity analysis is presented for simultaneous thermal radiation and mixed convection heat and mass transfer in thermal and solutal boundary layers over a semi-infinite vertical flat plate embedded in a fluid-saturated porous medium. The fluid is considered to be a gray, absorbing-emitting radiation but nonscattering and obeys Rosseland approximation for thermal radiation heat flux. It is observed that the radiation parameter R and temperature ratio CT enhance the heat transfer coefficient in the aiding flow, and their effect is more profound in the Darcy medium rather than in the non-Darcy medium. Even though the effect of radiation is to enhance the heat transfer rate in both aiding and opposing flows, it is more significant in the aiding flow. Unlike in the aiding-flow case, both in opposing-flow and in opposing-buoyancy cases, the effect of radiation is more pronounced in the non-Darcy medium. The effect of R and CT is to marginally increase the mass transfer coefficient. Even though radiation parameter does not have a direct impact on the mass transfer coefficient, it is worth mentioning that the mass transfer coefficient increases as a function of the Lewis number, more in the presence of radiation than in its absence.


Articles with similar content:

NUMERICAL TREATMENT AND GLOBAL ERROR ESTIMATION OF NATURAL CONVECTIVE EFFECTS ON GLIDING MOTION OF BACTERIA ON A POWER-LAW NANOSLIME THROUGH A NON-DARCY POROUS MEDIUM
Journal of Porous Media, Vol.18, 2015, issue 11
Abeer A. Shaaban, Muneer Y. Alnour, Mohamed Y. Abou-zeid
Effects of Thermal Radiation and Chemical Reaction on Steady MHD Mixed Convective Flow over a Vertical Porous Plate with Induced Magnetic Field
International Journal of Fluid Mechanics Research, Vol.42, 2015, issue 4
Kamalesh K. Pandit, Dipak Sarma
NATURAL CONVECTION HEAT AND MASS TRANSFER IN NON-DARCY POROUS MEDIUM EFFECTS OF COMINED DOUBLE DISPERSION, CHEMICAL REACTION, AND THERMAL RADIATION
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
H. Ali Agha, R. Alouaoui, M.N. Bouaziz
THERMAL RADIATION EFFECTS ON NON-NEWTONIAN FLUID IN A VARIABLE POROSITY REGIME WITH PARTIAL SLIP
Journal of Porous Media, Vol.19, 2016, issue 4
K. Harshavalli, V. Ramachandra Prasad, Osman Anwar Beg, A. Subba Rao
MHD FLOW AND HEAT TRANSFER OVER A NONLINEARLY STRETCHING SHEET IN POROUS MEDIUM FILLED WITH A NANOFLUID
Special Topics & Reviews in Porous Media: An International Journal, Vol.5, 2014, issue 1
Ioan Pop, Ebrahim Damangir, Iman Roohi Dehkordi, Sadegh Khalili, Saeed Dinarvand, Reza Hosseini