Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Porous Media
Impact-faktor: 1.49 5-jähriger Impact-Faktor: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Druckformat: 1091-028X
ISSN Online: 1934-0508

Volumen 23, 2020 Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.2020025738
pages 139-162


Ammar I. Alsabery
Refrigeration and Air-Conditioning Technical Engineering Department, College of Technical Engineering, The Islamic University, Najaf, Iraq; Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
R. Roslan
Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia
J. H. Al-Smail
Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, P.O. Box 5046, Dhahran 31261, Saudi Arabia
Ishak Hashim
School of Mathematical Sciences & Solar Energy Research Institute, Faculty of Science & Technology, Universiti Kebangsaan Malaysia 43600 UKM Bangi, Selangor DE, Malaysia


The aim of the present study is to analyze the effects of internal heat generation and partial heating on transient natural convection in an inclined porous cavity using a local thermal non-equilibrium (LTNE) model. An isothermal heater is placed on the bottom horizontal wall with length d, while the remainder of the wall is adiabatic. The left and right vertical walls are maintained at constant cold temperature Tc and the top horizontal wall is adiabatic. The Darcy law is used along with the Boussinesq approximation for the flow. The dimensionless governing equations subject to the selective boundary conditions are solved numerically using the finite difference method. The governing parameters of this study are the Darcy-Rayleigh number, heat source length, cavity inclination angle, heat generation parameter, modified conductivity ratio, and dimensionless time. The developed computational code is validated comprehensively using the grid independency test and numerical and experimental data of other studies. The obtained results reveal that the nonequilibrium effects are very strong at the cold walls and at the center of the cavity. In addition, increasing the inclination angle has the effect of reducing the heat transfer rate.


  1. Alsabery, A., Chamkha, A., Hashim, I., and Siddheshwar, P., Effects of Nonuniform Heating and Wall Conduction on Natural Convection in a Square Porous Cavity Using LTNE Model, J. Heat Transf., vol. 139, no. 12, p. 122008,2017.

  2. Anjum Badruddin, I., Zainal, Z., Aswatha Narayana, P., and Seetharamu, K., Thermal Non-Equilibrium Modeling of Heat Transfer through Vertical Annulus Embedded with Porous Medium, Int. J. Heat Mass Transf., vol. 49, no. 25, pp. 4955-4965, 2006.

  3. Armaghani, T., Chamkha, A.J., Maghrebi, M., andNazari, M., Numerical Analysis of a Nanofluid Forced Convection in a Porous Channel: A New Heat Flux Model in LTNE Condition, J. Porous Media, vol. 17, no. 7, pp. 637-646, 2014.

  4. Baytas, A.C. and Pop, I., Free Convection in a Square Porous Cavity Using a Thermal Nonequilibrium Model, Int. J. Therm. Sci., vol. 41, no. 9, pp. 861-870, 2002.

  5. Bejan, A., Dincer, I., Lorente, S., Miguel, A., andReis, H., Porous and Complex Flow Structures in Modern Technologies, Berlin: Springer Science & Business Media, 2013.

  6. Bhadauria, B. and Agarwal, S., Convective Transport in a Nanofluid Saturated Porous Layer with Thermal Non Equilibrium Model, Transp. Porous Media, vol. 88, no. 1, pp. 107-131, 2011.

  7. Calcagni, B., Marsili, F., and Paroncini, M., Natural Convective Heat Transfer in Square Enclosures Heated from Below, Appl. Therm. Eng., vol. 25, no. 16, pp. 2522-2531, 2005.

  8. Chowdhury, R., Parvin, S., Khan, M.A.H., and Chamkha, A.J., MHD Natural Convection in a Porous Equilateral Triangular Enclosure with a Heated Square Body in the Presence of Heat Generation, Spec. Topics Rev. Porous Media: Int. J., vol. 6, no. 4, pp. 353-365,2015.

  9. Du, Z. and Bilgen, E., Natural Convection in Vertical Cavities with Internal Heat Generating Porous Medium, Warme-und Stoffubertragung, vol. 27, no. 3, pp. 149-155,1992.

  10. Fusegi, T., Hyun, J.M., and Kuwahara, K., Natural Convection in a Differentially Heated Square Cavity with Internal Heat Generation, Numer. Heat Transf, vol. 21, no. 2, pp. 215-229,1992.

  11. Grosan, T., Revnic, C., Pop, I., and Ingham, D., Magnetic Field and Internal Heat Generation Effects on the Free Convection in a Rectangular Cavity Filled with a Porous Medium, Int. J. Heat Mass Transf., vol. 52, no. 5, pp. 1525-1533, 2009.

  12. Haddad, O., Al-Nimr, M., and Al-Khateeb, A., Validation of the Local Thermal Equilibrium Assumption in Natural Convection from a Vertical Plate Embedded in Porous Medium: Non-Darcian Model, Int. J. Heat Mass Transf., vol. 47, no. 8, pp. 2037.

  13. Ingham, D. and Pop, I., Transport Phenomena in Porous Media, vol. 3, Amsterdam: Elsevier, 2005.

  14. Kadir, N.F.A., Rees, D., and Pop, I., Conjugate Forced Convection Flow past a Circular Cylinder with Internal Heat Generation in a Porous Medium, Int. J. Numer. Methods Heat Fluid Flow, vol. 18, no. 6, p. 730,2008.

  15. Karaa, S. and Zhang, J., High Order ADI Method for Solving Unsteady Convection-Diffusion Problems, J. Comput. Phys., vol. 198, no. 1,pp. 1-9,2004.

  16. Khanafer, K.M. and Chamkha, A.J., Hydromagnetic Natural Convection from an Inclined Porous Square Enclosure with Heat Generation, Numer. Heat Transf., PartAAppl., vol. 33, no. 8, pp. 891-910,1998.

  17. Kuznetsov, A.V. and Nield, D.A., Effect of Local Thermal Nonequilibrium on the Onset of Convection in a Porous Medium Layer Saturated by a Nanofluid, Transp. Porous Media, vol. 83, no. 2, pp. 425-436, 2010.

  18. Kuznetsov, A.V. and Nield, D.A., The Effect of Local Thermalnonequilibrium on the Onset of Convection in a Porous Medium Layer Saturated by a Nanofluid: Brinkman Model, J. Porous Media, vol. 14, no. 4, pp. 285-293, 2011.

  19. Malashetty, M., Swamy, M., and Heera, R., Double Diffusive Convection in a Porous Layer Using a Thermal Non-Equilibrium Model, Int. J Therm. Sci., vol. 47, no. 9, pp. 1131-1147, 2008.

  20. Nield, D.A. and Bejan, A., Convection in Porous Media, 4th edition, Berlin: Springer, 2013.

  21. Ostrach, S., Natural Convection in Enclosures, J. Heat Transf, vol. 110, no. 4b, pp. 1175-1190,1988.

  22. Oztop, H. and Bilgen, E., Natural Convection in Differentially Heated and Partially Divided Square Cavities with Internal Heat Generation, Int. J. Heat Fluid Flow, vol. 27, no. 3, pp. 466-475, 2006.

  23. Peaceman, D.W. and Rachford, Jr., H.H., The Numerical Solution of Parabolic and Elliptic Differential Equations, J. Soc. Ind. Appl. Math, vol. 3, no. 1, pp. 28-41,1955.

  24. Rajarathinam, M. and Nithyadevi, N., Heat Transfer Enhancement of Nanofluid in an Inclined Porous Cavity, Spec. Topics Rev Porous Media: Int. J, vol. 9, no. 2, pp. 101-116, 2018.

  25. Rashad, A., Rashidi, M., Lorenzini, G., Ahmed, S.E., and Aly, A.M., Magnetic Field and Internal Heat Generation Effects on the Free Convection in a Rectangular Cavity Filled with a Porous Medium Saturated with Cu-Water Nanofluid, Int. J. Heat Mass Transf, vol. 104, pp. 878-889, 2017.

  26. Saeid, N. and Pop, I., Natural Convection from a Discrete Heater in a Square Cavity Filled with a Porous Medium, J. Porous Media, vol. 8, no. 1, pp. 55-64, 2005.

  27. Sharma, P. and Singh, G., Effects of Varying Viscosity and Thermal Conductivity on Steady MHD Free Convective Flow and Heat Transfer along an Isothermal Plate with Internal Heat Generation, Int. J. Numer. Methods Heat Fluid Flow, vol. 19, no. 1, pp. 78-92, 2009.

  28. Sheremet, M., Pop, I., and Nazar, R., Natural Convection in a Square Cavity Filled with a Porous Medium Saturated with a Nanofluid Using the Thermal Nonequilibrium Model with a Tiwari and Das Nanofluid Model, Int. J. Mech. Sci, vol. 100, pp. 312-321,2015.

  29. Wu, F. and Zhou, W., Local Thermal Nonequilibrium Effects on Natural Convection in a Porous Cavity Heated and Cooled from the Side in a Spatially Sinusoidal Manner, J. Porous Media, vol. 19, no. 2, pp. 113-129, 2016.

  30. Zargartalebi, H., Ghalambaz, M., Sheremet, M.A., and Pop, I., Unsteady Free Convection in a Square Porous Cavity Saturated with Nanofluid: The Case of Local Thermal Nonequilibrium and Buongiorno's Mathematical Models, J. Porous Media, vol. 20, no. 11, pp. 999-1016,2017.

  31. Zhang, X. and Liu, W., New Criterion for Local Thermal Equilibrium in Porous Media, J. Thermophys. Heat Transf., vol. 22, no. 4, pp. 649-653, 2008.