Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Porous Media
Impact-faktor: 1.49 5-jähriger Impact-Faktor: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Druckformat: 1091-028X
ISSN Online: 1934-0508

Volumen 23, 2020 Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.2020029262
pages 101-119


J.M.P.Q. Delgado
CONSTRUCT − LFC, Departamento de Engenharia Civil, Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
A. C. Azevedo
CONSTRUCT − LFC, Departamento de Engenharia Civil, Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
Ana Sofia Guimarães
CONSTRUCT − LFC, Departamento de Engenharia Civil, Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal


The study of moisture transport in multilayer building materials is relevant in building construction to avoid damage; for example, the drying process plays an important role in the available moisture both inside the material and at its surface. Drying can be defined as the process by which water leaves a porous building material. Understanding and knowledge of the process necessary to predict the performance of those materials in service. This experimental study analyzed the interface influence on the drying and wetting processes of ceramic blocks with perfect contact interface at different interface highs. The results showed an increase in the dry time constant for the materials with perfect contact interface compared to the monolithic materials, and the study found that the farther away from the base the interface is located, the greater is the drying time constant. The interface could significantly retard the moisture transport, i.e., the discontinuity of moisture content across the interface indicated that there was a difference in capillary pressure across the interface. Finally, the hydric resistance (HR) values, in multilayer building components, with perfect contact interface, are calculated using a new methodology proposed. This methodology is based on knee point detection and allows determining more correctly the HR values.


  1. Baini, R. and Langrish, T.A.G., Choosing an Appropriate Drying Model for Intermittent and Continuous Drying of Bananas, J. Food Eng., vol. 79, no. 1, pp. 330-343,2007.

  2. Bednar, T., Approximation of Liquid Moisture Transport Coefficient of Porous Building Materials by Suction and Drying Experiments. Demands on Determination of Drying Curve, Proc. of 6th Symp. Build. Phys. Nordic Countries, Trondheim, Norway, pp. 493-500, 2002.

  3. British Standards Institution, Gypsum Blocks. Definitions, Requirements and Test Methods, EN 12859, British Standard, 2011.

  4. Christopoulos, D.T., Reliable Computations of Knee Point for a Curve and Introduction of a Unit Invariant Estimation, Project: Basic Characteristics of Planar Noisy Curves, 2014. DOI: 10.13140/2.1.3111.5844.

  5. Corzo, O., Bracho, N., Pereira, A., and Vasquez, A., Weibull Distribution for Modelling Air Drying of Coroba Slices, LWT-Food Sci. Technol, vol. 41, no. 10, pp. 2023-2028, 2008.

  6. Crank, J., The Mathematics of Diffusion, New York: Oxford Science, 1975.

  7. Crausse, P., Fundamental Study of Heat and Moisture Transfer in Unsaturated Porous Medium, PhD, ENSEEIHT, Toulouse, 1983.

  8. Colinart, T. and Glouannec, P., Investigation of Drying of Building Materials by Single-Sided NMR, Energy Procedia, vol. 78, pp. 1484-1489, 2015.

  9. Derdour, L., Desmorieux, H., and Andrieu, J., A Contribution to the Characteristic Drying Curve Concept: Application to the Drying of Plaster, Dry. Technol., vol. 18, nos. 1-2, pp. 237-260, 2000.

  10. Descamps, F., Continuum and Discrete Modelling of Isothermal Water and Air Transfer in Porous Media, PhD, Catholic University of Leuven, Leuven, 1997.

  11. Freitas, V.P., Moisture Transfer in Building Walls-Interface Phenomenon Analysis, PhD, Faculty of Engineering, University of Porto, Porto, Portugal, 1992.

  12. Freitas, V.P., Abrantes, V., and Crausse, P., Moisture Migration in Building Walls-Analysis of the Interface Phenomena, Build. Environ, vol. 31, no. 2, pp. 99-108, 1996.

  13. Guimaraes, A.S., Delgado, J.M.P.Q., Azevedo, A.C., and Freitas, V.P., Interface Influence on Moisture Transport in Buildings, Constr. Build. Mater, vol. 162, pp. 480-488, 2018.

  14. Hii, C.L., Law, C.L., and Cloke, M., Modelling of Thin Layer Drying Kinetics of Cocoa Beans during Artificial and Natural Drying, J. Eng. Sci. Technol, vol. 3, no. 1, pp. 1-10,2008.

  15. Hii, C.L., Law, C.L., and Cloke, M., Modeling Using a New Thin Layer Drying Model and Product Quality of Cocoa, J. Food Eng., vol. 90, no. 2, pp. 191-198, 2009.

  16. Iglesias, H.A. and Chirife, J., Handbook of Food Isotherms, New York: Academic Press, 1983.

  17. International Organization for Standardization, Thermal Insulation: Determination of Steady-State Thermal Resistance and Related Properties-Heat Flow Meter Apparatus, ISO 8301,1991.

  18. International Organization for Standardization, Hygrothermal Performance of Building Materials and Products-Determination of Hygroscopic Sorption Properties, ISO 12571, 2000.

  19. International Organization for Standardization, Hygrothermal Performance of Building Materials and Products-Determination of Water Vapour Transmission Properties, ISO 12572, 2001.

  20. International Organization for Standardization, Hygrothermal Performance of Building Materials and Products. Determination of Water Absorption Coefficient by Partial Immersion, ISO 15148, 2002.

  21. Karoglou, M., Moropoulou, A., Maroulis, Z.B., and Krokida, M.K., Drying Kinetics of Some Building Materials, Dry. Technol, vol. 23, nos. 1-2, pp. 305-315, 2005.

  22. Kunzel, H., Simultaneous Heat and Moisture Transport in Building Components-One and Two-Dimensional Calculation Using Simple Parameters, Stuttgart, Germany: IBP, 1995.

  23. Marinos-Kouris, D., Maroulis, Z.B., and Kirannoudis, C.T., Computer Simulation of Industrial Dryers, Dry. Technol, vol. 14, no. 5, pp. 971-1010, 1996.

  24. Maroulis, Z.B. and Saravacos, G.D., Food Process Design, New York: Marcel Dekker, 2003.

  25. Mendes, N. and Philippi, P.C., A Method for Predicting Heat and Moisture Transfer through Multilayer Walls based on Temperature and Moisture Content Gradients, Int. J. Heat Mass Transf., vol. 48, pp. 37-51, 2005.

  26. Parti, M., Selection of Mathematical Models for Drying Grain in Thin-Layers, J. Agric. Eng. Res., vol. 54, no. 4, pp. 339-352, 1993.

  27. Pel, L., Moisture Transport in Porous Building Materials, PhD, Technical University Eindhoven, The Netherlands, 1995.

  28. Perrin, B., Study of Coupled Heat and Mass Transfer in Consolidated, Unsaturated Porous Materials Used in Civil Engineering, PhD, University Paul Sabatier, 1985.

  29. Philip, J.R., Theory of Infiltration, Adv. Hydrosci., vol. 5, pp. 215-296, 1969.

  30. Qin, M., Belarbi, R., A'it-Mokhtar, A., and Nilsson, L.O., Coupled Heat and Moisture Transfer in Multi-Layer Building Materials, Constr. Build. Mater, vol. 23, pp. 967-975,2009.

  31. Satopaa, V., Albrecht, J., Irwin, D., and Raghavan, B., Finding a "Kneedle" in a Haystack: Detecting Knee Points in System Behavior, Proc. of 31st Int. Conf. on Distributed Computing Systems Workshops, Minneapolis, Minnesota, USA, June 20-24, 2011.

  32. Taheri-Garavand, A., Rafiee, S., and Keyhani, A., Mathematical Modelling of Layer Drying Kinetics of Tomato Influence of Air Dryer Conditions, Int. Trans. J. Eng. Manage. Appl. Sci. Technol., vol. 2, pp. 147-160, 2011.

  33. Taoukil, D., El Bouardi, A., Sick, F., Mimet, A., Ezbakhe, H., and Ajzoul, T., Moisture Content Influence on the Thermal Conductivity and Diffusivity of Wood-Concrete Composite, Constr. Build. Mater., vol. 48, pp. 104-115,2013.

  34. Togrul, I.T. and Pehlivan, D., Modelling of Drying Kinetics of Single Apricot, J. Food Eng., vol. 58, no. 1, pp. 23-32, 2003.

  35. Wilson, M.A., Hoff, W.D., and Hall, C., Water Movement in Porous Building Materials-XIII Absorption in Two-Layer Composite, Build. Environ, vol. 30, pp. 209-219, 1995.