Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Porous Media
Impact-faktor: 1.49 5-jähriger Impact-Faktor: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Druckformat: 1091-028X
ISSN Online: 1934-0508

Volumes:
Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v17.i8.20
pages 669-684

FLOW AND HEAT TRANSFER IN A POROUS MEDIUM SATURATED BY A MICROPOLAR FLUID BETWEEN PARALLEL PERMEABLE DISKS

Jawali C. Umavathi
Department of Mathematics, Gulbarga University, Kalaburgi-585106, Karnataka, India
M Shekar
Department of Mathematics, Gulbarga University, Gulbarga 585 106, Karnataka, India

ABSTRAKT

In this paper, the flow and heat transfer in a porous medium saturated by a micropolar fluid between two parallel permeable disks with uniform suction or injection through the surface of the disks is studied analytically using differential transform methods. It is assumed that the Darcy−Brinkman model is considered for the flow through the porous medium. The governing nonlinear partial differential equations of motion are transformed into a dimensionless form through von Karman's similarity transformation. The approximate solutions of these equations are obtained in the form of series with easily computable terms using differential transformations. The effects of the Reynolds number, the Darcy number, the vortex viscosity parameter, and the Prandtl number on the flow field and temperature distributions are determined and discussed. The results show that for different values of the Darcy number and vortex viscosity parameter, the shear stress is more for suction velocity and less for injection velocity, respectively. It is also found that the rate of heat transfer increases as Reynolds number increases for both suction and injection parameter. As the Darcy number and vortex viscosity parameter increases, the rate of heat transfer decreases for injection and increases for suction.


Articles with similar content:

MIXED CONVECTION FLOW OF PERMEABLE FLUID IN A VERTICAL CHANNEL IN THE PRESENCE OF FIRST-ORDER CHEMICAL REACTION: VARIABLE PROPERTIES
Special Topics & Reviews in Porous Media: An International Journal, Vol.9, 2018, issue 2
Syed Mohiuddin, Jawali C. Umavathi
HALL EFFECTS ON MHD SQUEEZING FLOW OF A WATER-BASED NANOFLUID BETWEEN TWO PARALLEL DISKS
Journal of Porous Media, Vol.22, 2019, issue 2
M. Veera Krishna, Ali J. Chamkha
SQUEEZING FLOW WITH SECOND-ORDER VELOCITY AND THERMAL SLIP CONDITIONS
Heat Transfer Research, Vol.46, 2015, issue 12
Ahmed Alsaedi, A. Qayyum, Tasawar Hayat
MIXED CONVECTION FLOW OF DOUBLY STRATIFIED COUPLE STRESS FLUID WITH HEAT AND MASS FLUXES
Computational Thermal Sciences: An International Journal, Vol.6, 2014, issue 5
Kolla Kaladhar, D. Srinivasacharya
MHD FLOW AND HEAT TRANSFER OVER A NONLINEARLY STRETCHING SHEET IN POROUS MEDIUM FILLED WITH A NANOFLUID
Special Topics & Reviews in Porous Media: An International Journal, Vol.5, 2014, issue 1
Ioan Pop, Ebrahim Damangir, Iman Roohi Dehkordi, Sadegh Khalili, Saeed Dinarvand, Reza Hosseini