Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Porous Media
Impact-faktor: 1.752 5-jähriger Impact-Faktor: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Druckformat: 1091-028X
ISSN Online: 1934-0508

Volumes:
Volumen 23, 2020 Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v14.i5.30
pages 395-409

INVESTIGATING ROCK-FACE BOUNDARY EFFECTS ON CAPILLARY PRESSURE AND RELATIVE PERMEABILITY MEASUREMENTS

O. A. Al-Omair
Department of Petroleum Engineering, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
S. M. Al-Mudhhi
Department of Petroleum Engineering, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
M. M. Al-Dousari
Department of Petroleum Engineering, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

ABSTRAKT

This paper covers the experimental study of water-gas capillary pressure and relative permeability in laboratory scale using the centrifuge spinning disk method to investigate the rock-face boundary effects. The capillary pressure wetting-phase saturation data were first generated using both the centrifuge spinning disk setup and the porous plate setup for the same samples. These measurements are performed to validate the accuracy of the centrifuge spinning disk method. Using the measured capillary pressure data, relative permeability relationships were estimated for each sample by history-matching production and saturation distribution data. The production data was monitored for each disk-shaped rock sample using two different experimental conditions—one by sealing the top and bottom faces of the sample and the other without sealing the rock faces. This is done to investigate the effects of sealing the tested samples on the measured data and ultimately on the relative permeability. Results show that the measured capillary pressure data generated using the spinning disk method are in agreement with the capillary pressure data generated with the porous plate method. Results also showed that the gas and brine relative permeabilities are independent of the rock sealing conditions. The average variation between the two methods used was in the order of 2% with a standard deviation of 2.2%. Capillary pressure data measured using cases with unsealed boundaries were practically a reproduction of capillary pressure data for the same core samples with sealed boundaries. The average variation between these methods was approximately 2.3% with a standard deviation of 2.6%. Capillary pressure and relative permeability are of great importance to petroleum engineers attempting to understand and predict the behavior of various petroleum recovery processes. Accurate determination of relative permeability data is essential for estimating the free water saturation, aiding in evaluating drill-stem and production tests, and estimating the residual saturations. This accuracy of the capillary pressure data and the precession of generated relative permeability data is a consequence of the refinement of the spinning disk setup. The improvement consists of modification of the core holder and adaptation of better lighting conditions. With this procedure, direct determination of capillary pressure saturation data is possible for the equilibrium saturation distribution.


Articles with similar content:

X-RAY RADIOGRAPHIC IMAGING OF UNSTEADY FLOWS IN POROUS MEDIA
Journal of Flow Visualization and Image Processing, Vol.22, 2015, issue 1-3
D. Casagrande, Gianni Schena, Pacelli L.J. Zitha, Marzio Piller
EXPERIMENTAL INVESTIGATION OF TERTIARY OIL GRAVITY DRAINAGE IN FRACTURED POROUS MEDIA
Special Topics & Reviews in Porous Media: An International Journal, Vol.1, 2010, issue 2
Behzad Rostami, M. Rezaveisi, Shahab Ayatollahi, Riyaz Kharrat, C. Ghotbi
EXPERIMENTAL AND SIMULATION STUDIES OF HEAVY OIL/WATER RELATIVE PERMEABILITY CURVES: EFFECT OF TEMPERATURE
Special Topics & Reviews in Porous Media: An International Journal, Vol.4, 2013, issue 2
Manoochehr Akhlaghinia, Christine W. Chan, Farshid Torabi
COMPARING THREE IMAGE PROCESSING ALGORITHMS TO ESTIMATE THE GRAIN-SIZE DISTRIBUTION OF POROUS ROCKS FROM BINARY 2D IMAGES AND SENSITIVITY ANALYSIS OF THE GRAIN OVERLAPPING DEGREE
Special Topics & Reviews in Porous Media: An International Journal, Vol.6, 2015, issue 1
Arash Rabbani, Shahab Ayatollahi
FIXED GRID FINITE ELEMENT ANALYSIS OF SOLIDIFICATION
ICHMT DIGITAL LIBRARY ONLINE, Vol.3, 1997, issue
Marek Rebow, Jerzy Banaszek, Tomasz A. Kowalewski