Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Porous Media
Impact-faktor: 1.49 5-jähriger Impact-Faktor: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Druckformat: 1091-028X
ISSN Online: 1934-0508

Volumes:
Volumen 23, 2020 Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v16.i5.50
pages 445-457

MIXED CONVECTION BOUNDARY LAYER FLOW PAST A HORIZONTAL CIRCULAR CYLINDER EMBEDDED IN A POROUS MEDIUM SATURATED BY A NANOFLUID: BRINKMAN MODEL

L Tham
Universiti Malaysia Kelantan
Roslinda Nazar
School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
Ioan Pop
Department of Applied Mathematics, Babes-Bolyai University, 400084 Cluj-Napoca, Romania

ABSTRAKT

In this paper, the steady mixed convection boundary layer flow past a horizontal circular cylinder with a constant surface temperature and embedded in a porous medium saturated by a nanofluid in a stream flowing vertically upward has been studied by the Brinkman model for both cases of a heated and cooled cylinder. The resulting system of nonlinear partial differential equations is solved numerically using an implicit finite-difference scheme. Numerical results are obtained and discussed for the skin friction coefficient, the local Nusselt number, and the local Sherwood number, as well as the velocity, temperature, and nanoparticle volume fraction profiles, for various values of the governing parameters, namely, the mixed convection parameter, Darcy-Brinkman parameter, Lewis number, Brownian number, buoyancy ratio parameter, and thermophoresis parameter. From this study, it is found that the nanoparticle volume fraction improved the fluid-flow and heat-transfer characteristics.