Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Porous Media
Impact-faktor: 1.752 5-jähriger Impact-Faktor: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Druckformat: 1091-028X
ISSN Online: 1934-0508

Volumes:
Volumen 23, 2020 Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v17.i10.10
pages 841-859

VISCOUS DISSIPATION EFFECTS ON HEAT TRANSFER, ENERGY STORAGE, AND ENTROPY GENERATION FOR FLUID FLOW IN A POROUS CHANNEL SUBMITTED TO A UNIFORM MAGNETIC FIELD

Bayssain Amami
Laboratoire d'Etudes des Systèmes Thermiques et Energétiques, Université de Monastir, Ecole Nationale d'Ingénieurs de Monastir, Rue Ibn Eljazzar, 5019 Monastir, Tunisia
Hacen Dhahri
Laboratory of Thermal and Energy Systems Studies, National School of Engineers, Monastir University, Monastir, Tunisia
Abdallah Mhimid
Laboratory of Thermal and Energetic Systems Studies (LESTE) at the National School of Engineering of Monastir, 5019 Ibn Eljazzar Street, University of Monastir

ABSTRAKT

A numerical study of viscous dissipation effects on heat transfer, thermal energy storage by sensible heat and entropy generation within a porous channel with insulated walls was carried out in a laminar flow regime. The channel is subjected to the effect of a transverse magnetic field. In the flow modeling, the Brinkman-Forchheimer extended Darcy model (DBLF) is incorporated in the momentum equation. The mathematical model for the energy equation is based on the local thermal equilibrium assumption and takes into account the viscous dissipation effects. The obtained governing equations are solved with the lattice Boltzmann Method (LBM). Efforts are focused on identifying the influence of the Darcy number, Eckert number, Hartmann number, the thermal conductivity ratio and the heat capacity ratio on fluid flow, heat transfer, energy storage, and entropy generation throughout this paper.


Articles with similar content:

LATTICE BOLTZMANN SIMULATION OF THERMAL NON-EQUILIBRIUM FORCED CONVECTIVE FLOW AND ENERGY STORAGE IN A POROUS CHANNEL
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2014, issue
Hussein El Abrach, Baycain Amami, Hacen Dhahri, Abdallah Mhimid
UNSTEADY MAGNETOHYDRODYNAMIC CHANNEL FLOW WITH HALL AND ION-SLIP EFFECTS: THE INTEGRAL TRANSFORM SOLUTION PROCEDURE
Journal of Enhanced Heat Transfer, Vol.25, 2018, issue 4-5
Bruno N. M. da Silva, Gustavo E. Assad, João A. de Lima
COMPUTATIONAL INVESTIGATION OF HEATED LID-DRIVEN SQUARE CAVITY USING LATTICE BOLTZMANN METHOD
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
A. Satheesh, S. Arun, P. Purushothaman
SLIP-FLOW HEAT TRANSFER IN A SEMI-INFINITE TUBE CONSIDERING THE EFFECT OF AXIAL CONDUCTION AND VISCOUS DISSIPATION
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Ashok Kumar Satapathy, Debashis Panda
LATTICE BOLTZMANN METHOD FOR MODELLING HEAT AND MASS TRANSFERS DURING DRYING OF DEFORMABLE POROUS MEDIUM
Journal of Porous Media, Vol.16, 2013, issue 9
Hussein El Abrach, Hacen Dhahri, Abdallah Mhimid