Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Porous Media
Impact-faktor: 1.49 5-jähriger Impact-Faktor: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Druckformat: 1091-028X
ISSN Online: 1934-0508

Volumen 23, 2020 Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.2019026995
pages 1639-1650


Saima Noreen
Department of Mathematics, Faculty of Science, Jiangsu University, Zhenjiang 212013, China; Department of Mathematics, COMSATS University Islamabad 45550, Park Road, Tarlai Kalan, Islamabad 44000, Pakistan
Department of Mathematics, COMSATS University Islamabad 45550, Park Road, Tarlai Kalan, Islamabad 44000, Pakistan
Muhammad Qasim
Department of Mathematics, Faculty of Science, Jiangsu University, Zhenjiang 212013, China; Department of Mathematics, COMSATS University Islamabad 45550, Park Road, Tarlai Kalan, Islamabad 44000, Pakistan
Dharmendra Tripathi
Department of Mathematics, National Institute of Technology, Uttarakhand 246174, India


This paper aims to investigate the electro-osmotic flow of aqueous solution in a non-Darcy porous medium. The variations in electro-osmotic flow characteristics are analyzed in the presence of magneto-hydrodynamics (MHD) and peristaltic pumping. An asymmetric sinusoidal channel wall, which is moving with peristaltic wave velocity along the channel length, is considered. A lubrication approach is adopted to simplify the governing equations for fluid flow. Debye-Hückel linearization is also utilized to simplify the Poisson equations. A regular perturbation solution is obtained to analyze the effects of mobility of the medium, Helmholtz-Smoluchowski velocity, Hartmann number, and the Darcy number on electro-osmotic flow characteristics and pumping characteristics. The findings of the present study may be applicable in designing the hybrid electro-osmotic micropumps, transport phenomena in chemical engineering, and energy systems exploiting electrokinetics.


  1. Begum, A.S., Nithyadevi, N., Oztop, H.F., and Al-Salem, K., Numerical Simulation of MHD Mixed Convection in a Nanofluid Filled Non-Darcy Porous Enclosure, Int. J. Mech. Sci., vol. 130, pp. 154-166, 2017.

  2. Bertuzzi, A., Salinari, S., Mancinelli, R., and Pescatori, M., Peristaltic Transport of a Solid Bolus, J. Biomech., vol. 16, pp. 459-464, 1983.

  3. Bouriat, P., Saulnier, P., Brochette, P., Graciaa, A., and Lachaise, J., A Convenient Apparatus to Determine the Zeta Potential of Grains by Electro-Osmosis, J. Colloid Interface Sci., vol. 209, pp. 445-448, 1999.

  4. Bowen, W.R. and Clark, R.A., Electro-Osmosis at Microporous Membranes and the Determination of Zeta-Potential, J. Colloid Interf. Sci, vol. 97, pp. 401-409, 1984.

  5. BroZ, Z. and Epstein, N., Electrokinetic Flow through Porous Media Composed of Fine Cylindrical Capillaries, J. Colloid Interf. Sci., vol. 56, pp. 605-612, 1976.

  6. Cameselle, C. and Reddy, K.R., Development and Enhancement of Electro-Osmotic Flow for the Removal of Contaminants from Soils, Electrochim. Acta, vol. 86, pp. 10-22, 2012.

  7. Chakraborty, S., Augmentation of Peristaltic Microflows through Electro-Osmotic Mechanisms, J. Phys. D: Appl. Phys., vol. 39, pp. 5356-5363, 2006.

  8. Chu, Z.K.H., Stability of Flows in a Peristaltic Transport, Mech. Res. Commun., vol. 30, pp. 623-628,2003.

  9. Elshehawey, E.F., Eldabe, N.T., Elghazy, E.M., and Ebaid, A., Peristaltic Transport in an Asymmetric Channel through a Porous Medium, Appl. Math. Comput., vol. 182, pp. 140-150, 2006.

  10. Forchheimer, P., Wasserbewewegung durch Boden, Zeitz. ver. Deutsch Ing., vol. 45, pp. 1782-1788,1901.

  11. Goswami, P. and Chakraborty, S., Semi-Analytical Solutions for Electroosmotic Flows with Interfacial Slip in Microchannels of Complex Cross-Sectional Shapes, Microfluidics Nanofluidics, vol. 11, pp. 255-267,2011.

  12. Gupta, A., Coelho, D., and Adler, P.M., Universal Electro-Osmosis Formulae for Porous Media, J. Colloid Interf. Sci., vol. 319, pp. 549-554, 2008.

  13. Hayat, T., Hussain, Q., and Ali, N., Influence of Partial Slip on the Peristaltic Flow in a Porous Medium, Physica A: Stat. Mech. Its Appl., vol. 387, pp. 3399-3409, 2008.

  14. Kikuchi, Y., Effect of Leukocytes and Platelets on Blood Flow through a Parallel Array of Microchannels: Micro- and Macroflow Relation and Rheological Measures of Leukocyte and Platelet Activities, Microvasc. Res, vol. 50, pp. 288-300, 1995.

  15. Latham, T.W., Fluid Motion in a Peristaltic Pump, MS, MIT, Cambridge, MA, 1966.

  16. Li, B., Zhou, W.N., Yan, Y.Y., and Tian, C., Evaluation of Electro-Osmotic Pumping Effect on Microporous Media Flow, Appl. Therm. Eng., vol. 60, pp. 449-455,2013.

  17. Li, M. and Brasseur, J.G., Non-Steady Peristaltic Transport in Finite-Length Tubes, J. Fluid Mech, vol. 248, pp. 129-151,1993.

  18. Mishra, M. and Rao, A.R., Peristaltic Transport of a Newtonian Fluid in an Asymmetric Channel, Zeitschrift fur Angewandte Mathematik undPhysik ZAMP, vol. 54, pp. 532-550,2003.

  19. Misra, J.C. and Pandey, S.K., Peristaltic Transport of Blood in Small Vessels: Study of a Mathematical Model, Comput. Math. Appl., vol. 43, pp. 1183-1193, 2002.

  20. Reddy, M.G., Heat and Mass Transfer on Magneto-Hydrodynamic Peristaltic Flow in a Porous Medium with Partial Slip, Alexandria Eng. J, vol. 55, pp. 1225-1234, 2016.

  21. Srinivas, S. and Kothandapani, M., The Influence of Heat and Mass Transfer on MHD Peristaltic Flow through a Porous Space with Compliant Walls, Appl. Math. Comput, vol. 213, pp. 197-208,2009.

  22. Starov, V.M. and Zhdanov, V.G., Effective Viscosity and Permeability of Porous Media, Colloids Surfaces A: Physicochem. Eng. Aspects, vol. 192, pp. 363-375, 2001.

  23. Tripathi, D., Peristaltic Transport of a Viscoelastic Fluid in a Channel, Acta Astronautica, vol. 68, pp. 1379-1385, 2011.

  24. Tripathi, D., Study of Transient Peristaltic Heat Flow through a Finite Porous Channel, Math. Comput. Model., vol. 57, pp. 1270-1283,2013.

  25. Tripathi, D., Bhushan, S., and Beg, O.A., Transverse Magnetic Field Driven Modification in Unsteady Peristaltic Transport with Electrical Double Layer Effects, Colloids Surfaces A: Physicochem. Eng. Aspects, vol. 506, pp. 32-39, 2016.

  26. Vajravelu, K., Radhakrishnamacharya, G., and Radhakrishnamurty, V., Peristaltic Flow and Heat Transfer in a Vertical Porous Annulus, with Long Wave Approximation, Int. J. Non-Lin. Mech., vol. 42, pp. 754-759, 2007.

  27. Veyskarami, M., Hassani, A.H., and Ghazanfari, M.H., Modeling of Non-Darcy Flow through Anisotropic Porous Media: Role of Pore Space Profiles, Chem. Eng. Sci, vol. 151, pp. 93-104,2016.

  28. Wu, Y.S., Non-Darcy Flow of Immiscible Fluids, in Multiphase Fluid Flow in Porous and Fractured Reservoirs, Amsterdam, Netherlands: Elsevier, pp. 167-206, 2016.

  29. Wu, Y.Y. and Keh, H.J., Electrokinetic Flow and Electric Current in a Fibrous Porous Medium, J. Phys. Chem. B, vol. 116, pp. 3578-3586, 2012.

  30. Yang, C., Kang, Y., and Huang, X., Electrokinetic Flow in Porous Media, in Encyclopedia of Microfluidics and Nanofluidics, D. Li, Ed., Boston, MA: Springer, pp. 795-806,2015.

  31. Zhou, J., Tao, Y.L., Xu, C.J., Gong, X.N., and Hu, P.C., Electro-Osmotic Strengthening of Silts based on Selected Electrode Materials, Soils Foundations, vol. 55, pp. 1171-1180, 2015.