Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Porous Media
Impact-faktor: 1.49 5-jähriger Impact-Faktor: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Druckformat: 1091-028X
ISSN Online: 1934-0508

Volumes:
Volumen 23, 2020 Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v20.i6.50
pages 549-557

VISUAL STUDY OF TURBULENT FILTRATION IN POROUS MEDIA

Aleksei R. Evseev
Kutateladze Institute of Thermophysics, 1 Lavrentiev Avenue, Novosibirsk, 630090, Russia

ABSTRAKT

The effect of pore geometry and Reynolds number (1000−20000) on the flow structure, formation of vortex zones, and their scale in a stationary layer of spheres was studied visually in the turbulent developed regime of filtration using the refractive-index matching technique. Three types of packing with different porosity were realized in the experiments: a cubic packing with through channels, octahedral packing with blocked channels, and random packing. For the regular packing in the turbulent regime, the shape and size of the resulting vortex structures are determined by the packed bed geometry, and do not depend on the Reynolds number in the considered range. Vortex structures are usually formed near the contact points of spheres; their sizes do not exceed the pore scale. In the random packing of spheres in the filtration turbulent flow, the small zones of separation are formed first, where the vortex structure stabilizes quickly. The further increase in the Reynolds number leads to formation of the larger vortex regions of recirculation, which, however, do not occupy the entire shadow area behind the sphere.