Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Porous Media
Impact-faktor: 1.49 5-jähriger Impact-Faktor: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Druckformat: 1091-028X
ISSN Online: 1934-0508

Volumes:
Volumen 23, 2020 Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.2018028721
pages 209-223

HALL EFFECTS ON MHD SQUEEZING FLOW OF A WATER-BASED NANOFLUID BETWEEN TWO PARALLEL DISKS

M. Veera Krishna
Department of Mathematics, Rayalaseema University, Kurnool, Andhra Pradesh - 518007, India
Ali J. Chamkha
Department of Mechanical Engineering, Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University, Al-Khobar 31952, Kingdom of Saudi Arabia; RAK Research and Innovation Center, American University of Ras Al Khaimah, United Arab Emirates, 10021

ABSTRAKT

The flow squeezed between parallel flat plates that are placed horizontally in nonporous media is of great interest because of its uses in many industries and engineering applications. In light of this fact, we have considered the magnetohydrodynamic (MHD) squeezing flow of a water-based nanofluid through a saturated porous medium between two parallel disks, taking the Hall current into account. The governing equations are solved by the Galerkin optimal homotopy asymptotic method. The effects of nondimensional parameters on velocity, temperature, and concentration have been discussed with the help of graphs. Also, representative numerical solutions for the local Nusselt number and the local Sherwood number are obtained, presented, and discussed. The behaviors of key parameters such as suction/blowing, squeeze, Hartman number, Hall parameter, Brownian motion, and thermophoresis are thoroughly examined. A great impact on the concentration field is observed for the suction flow when compared with the blowing case. The Brownian motion and thermophoresis effects result in an appreciable increase in the temperature and nanoparticles concentration. For both suction and blowing, the temperature and concentration distributions increase monotonically as the suction or blowing parameter increases. The axial velocity increases near the central axis of the channel but decreases near the walls. Under certain assumptions, the present results are compared with already existing ones in the literature and they are found to be in good agreement.


Articles with similar content:

NUMERICAL EXAMINATION OF MHD NONLINEAR RADIATIVE SLIP MOTION OF NON-NEWTONIAN FLUID ACROSS A STRETCHING SHEET IN THE PRESENCE OF A POROUS MEDIUM
Heat Transfer Research, Vol.50, 2019, issue 12
J. V. Ramana Reddy, V. Sugunamma, N. Sandeep, Kempannagari Anantha Kumar
INFLUENCE OF VISCOUS DISSIPATION AND HEAT GENERATION/ABSORPTION ON AG-WATER NANOFLUID FLOW OVER A RIGA PLATE WITH SUCTION
International Journal of Fluid Mechanics Research, Vol.46, 2019, issue 2
Manoj Kumar, Ashish Mishra
Computational Modelling of MHD Flow and Mass Transfer in Stretching Sheet with Slip Effects at the Porous Surface
International Journal of Fluid Mechanics Research, Vol.37, 2010, issue 3
Babulal Talukdar, Dulal Pal
NATURAL CONVECTION ABOVE A HORIZONTAL PLATE IN A NANOFLUID-SATURATED POROUS MEDIUM WITH OR WITHOUT A MAGNETIC FIELD
Journal of Porous Media, Vol.18, 2015, issue 6
Abhijit Guha, Kaustav Pradhan
Mixed convection flow of Casson fluid over a stretching sheet with convective boundary conditions and Hall effect
Second Thermal and Fluids Engineering Conference, Vol.4, 2017, issue
M. Bilal Ashraf, Tasawar Hayat