Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Porous Media
Impact-faktor: 1.752 5-jähriger Impact-Faktor: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Druckformat: 1091-028X
ISSN Online: 1934-0508

Volumes:
Volumen 23, 2020 Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v18.i12.30
pages 1187-1200

COMPUTATIONAL INVESTIGATION OF HYDROMAGNETIC THERMO-SOLUTAL NANOFLUID SLIP FLOW IN A DARCIAN POROUS MEDIUM WITH ZERO MASS FLUX BOUNDARY CONDITION USING STRETCHING GROUP TRANSFORMATIONS

M. Jashim Uddin
USM
Google Scolar: https://scholar.google.com.pk/citations?user=QNmaAqAAAAAJ&hl=en
Muhammad Nomani Kabir
Faculty of Computer Systems and Software Engineering, University Malaysia Pahang, 26300 Gambang, Pahang, Malaysia
Yasser Alginahi
Deanship of Academic Services, Department of Computer Science, Taibah University, P.O. Box 344, Madinah, Saudi Arabia

ABSTRAKT

In this paper, hydromagnetic thermo-solutal nanofluid flow past a flat plate embedded in a Darcy porous medium has been investigated considering zero mass flux with velocity and thermal slips boundary conditions. The nanofluid flow is considered as 2D, steady state, incompressible, and laminar. We used a generalized stretching group of transformations to develop the similarity solutions of the model. Using these transformations, the transport equations of the nanofluid flow model are reduced to a system of nonlinear ordinary differential equations (ODEs). Finally, the transformed ODEs are computationally solved using MATLAB nonlinear equation solver "fsolve" and ODE solver "ode15s". Solutions are compared with previously available results and the comparison shows good correlation. Furthermore, the computational results are provided to demonstrate the influence of the dimensionless velocity slip parameter, thermal slip parameter, magnetic field parameter, Brownian motion parameter, thermophoresis parameter, and Darcy number on the dimensionless velocity, temperature, and nanoparticle volume fraction (concentration) fields, as well as on the heat transfer rate and skin friction. It was found that the skin friction factor decreases (increases) while the heat transfer rate increases (decreases) with the velocity (thermal) slip parameter. Both the heat transfer rate and the friction factor increase with the magnetic field and Darcy number.


Articles with similar content:

FINITE ELEMENT SIMULATION OF NONLINEAR MAGNETO-MICROPOLAR STAGNATION POINT FLOW FROM A POROUS STRETCHING SHEET WITH PRESCRIBED SKIN FRICTION
Computational Thermal Sciences: An International Journal, Vol.7, 2015, issue 1
Osman Anwar Beg, Diksha Gupta, Bani Singh, Lokendra Kumar
MULTIPLE SLIP EFFECTS ON UNSTEADY MAGNETOHYDRODYNAMIC NANOFLUID TRANSPORT WITH HEAT GENERATION/ABSORPTION EFFECTS IN TEMPERATURE DEPENDENT POROUS MEDIA
Journal of Porous Media, Vol.18, 2015, issue 9
Osman Anwar Beg, Waqar Khan, Mohammed Jashim Uddin
HEAT GENERATION/ABSORPTION AND RADIATION EFFECTS ON HYDROMAGNETIC STAGNATION POINT FLOW OF NANOFLUIDS TOWARD A HEATED POROUS STRETCHING/SHRINKING SHEET WITH SUCTION/INJECTION
Journal of Porous Media, Vol.23, 2020, issue 1
K. M. Kanika, Santosh Chaudhary
UNSTEADY MHD STAGNATION POINT FLOW OF PRANDTL NANOFLUID OVER AN EXPONENTIALLY STRETCHING/SHRINKING SHEET WITH SUCTION/INJECTION AND PARTIAL SLIP
Special Topics & Reviews in Porous Media: An International Journal, Vol.11, 2020, issue 6
Nabil T. M. Eldabe, Hameda M. Shawky, Kawther A. Kamel, Esmat A. Abd-Aziz
VELOCITY, THERMAL AND CONCENTRATION SLIP EFFECTS ON MHD SILVER–WATER NANOFLUID FLOW PAST A PERMEABLE CONE WITH SUCTION/INJECTION AND VISCOUS-OHMIC DISSIPATION
Heat Transfer Research, Vol.50, 2019, issue 14
Manoj Kumar, Ashish Mishra, Alok Kumar Pandey