Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Porous Media
Impact-faktor: 1.49 5-jähriger Impact-Faktor: 1.159 SJR: 0.504 SNIP: 0.671 CiteScore™: 1.58

ISSN Druckformat: 1091-028X
ISSN Online: 1934-0508

Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v8.i6.30
pages 569-588

Effect of Magnetic-Field-Dependent Viscosity on a Rotating Ferromagnetic Fluid Heated and Soluted from Below, Saturating a Porous Medium

Department of Mathematics, National Institute of Technology, Hamirpur, (H.P.) 177005, India
Department of Applied Sciences, National Institute of Technology, Hamirpur, (H.P.)-177 005, India
R. C. Sharma
Department of Mathematics, Himachal Pradesh University, Summer Hill, Shimla 171 005, India


The paper deals with the linear stability analysis of a rotating ferromagnetic fluid heated and soluted from below, saturating a porous medium in the presence of a uniform vertical magnetic field. The effect of magnetic-field-dependent viscosity is incorporated in the analysis. The exact solution is obtained for a fluid layer contained between two free boundaries that are constrained flat. For the case of stationary convection, rotation, stable solute gradient, and magnetic field-dependent viscosity have a stabilizing effect on the onset of instability, whereas magnetization and medium permeability may have destabilizing or stabilizing effects. The critical wave number and the critical magnetic thermal Rayleigh number for the onset of instability are also determined numerically for sufficiently large values of buoyancy magnetization parameter M1 and the results are depicted graphically. The principle of exchange of stabilities is found to hold true for the ferromagnetic fluid saturating a porous medium heated from below in the absence of stable solute gradient and rotation. The oscillatory modes are introduced due to the presence of the stable solute gradient and rotation, which were nonexistent in their absence. A sufficient condition for the nonexistence of overstability is also obtained.

Articles with similar content:

Thermosolutal Convection in a Ferromagnetic Fluid Saturating a Porous Medium
Journal of Porous Media, Vol.8, 2005, issue 4
Sunil, R. C. Sharma, Divya
On a Couple-Stress Fluid Heated from Below in a Porous Medium in the Presence of a Magnetic Field and Rotation
Journal of Porous Media, Vol.5, 2002, issue 2
Sunil, R. C. Sharma, Mohinder Pal
The Effect of Suspended Particles on Marginal Stability of Magnetized Ferrofluid with Internal Angular Momentum
Heat Transfer Research, Vol.41, 2010, issue 2
Sunil Kumar, Prakash Chand, Amit Mahajan
Journal of Porous Media, Vol.14, 2011, issue 7
Pardeep Kumar, Mahinder Singh
Effect of Suspended Particles on Couple-Stress Fluid Heated and Soluted from Below in Porous Medium
Journal of Porous Media, Vol.7, 2004, issue 1
Sunil, R. C. Sharma, Rajender Singh Chandel