Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Porous Media
Impact-faktor: 1.752 5-jähriger Impact-Faktor: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Druckformat: 1091-028X
ISSN Online: 1934-0508

Volumes:
Volumen 23, 2020 Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v20.i1.10
pages 1-17

HEAT AND MASS TRANSFER CHARACTERISTICS OF Al2O3−WATER AND Ag−WATER NANOFLUID THROUGH POROUS MEDIA OVER A VERTICAL CONE WITH HEAT GENERATION/ABSORPTION

P. Sudarsana Reddy
Department of Mathematics, RGM College of Engineering and Technology, Nandyal 518501, AP, India
Ali J. Chamkha
Mechanical Engineering Department, Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University, Al-Khobar 31952, Saudi Arabia; RAK Research and Innovation Center, American University of Ras Al Khaimah, P.O. Box 10021, Ras Al Khaimah, United Arab Emirates

ABSTRAKT

In this article, we have presented a numerical solution to the MHD heat and mass transfer flow of a nanofluid through porous media over a vertical cone with heat generation/absorption, thermal radiation, and chemical reaction. Though we have different varieties of nanofluids, we have considered Al2O3−water and Ag−water based nanofluids (with volume fraction 1% and 4%) in this problem. The transformed conservation equations for the nanofluid are solved numerically subject to the boundary conditions using an efficient, extensively validated, variational finite element analysis. The numerical code is validated with previous studies. The influence of important nondimensional parameters, namely, nanoparticle volume fraction (φ), Prandtl number (Pr), magnetic parameter (M), mixed convection (Ra), buoyancy ratio (Nr), and space-dependent (A), temperature-dependent (B), thermal radiation (R), and chemical reaction (Cr) on velocity, temperature, and nanoparticle concentration fields as well as the skin-friction coefficient, Nusselt number, and Sherwood number are examined in detail and the results are shown graphically and in tabular form to illustrate the physical importance of the problem.


Articles with similar content:

FREE CONVECTION IN A NON-NEWTONIAN POWER-LAW FLUID-SATURATED POROUS MEDIUM WITH CHEMICAL REACTION AND RADIATION EFFECTS
Special Topics & Reviews in Porous Media: An International Journal, Vol.4, 2013, issue 3
G. Swamy Reddy, Darbhasayanam Srinivasacharya
ANALYTICAL SOLUTION FOR NATURAL CONVECTION HEAT TRANSFER ABOUT A VERTICAL CONE IN POROUS MEDIA FILLED WITH A NON-NEWTONIAN Al2O3-WATER NANOFLUID
Computational Thermal Sciences: An International Journal, Vol.5, 2013, issue 1
Davood Ganji (D.D. Ganji), S. Tavakoli, Alireza Rasekh
MULTIPLE SLIP EFFECTS ON UNSTEADY MAGNETOHYDRODYNAMIC NANOFLUID TRANSPORT WITH HEAT GENERATION/ABSORPTION EFFECTS IN TEMPERATURE DEPENDENT POROUS MEDIA
Journal of Porous Media, Vol.18, 2015, issue 9
Osman Anwar Beg, Waqar Khan, Mohammed Jashim Uddin
SISKO NANOFLUID FLOW OVER A VERTICAL STRETCHING SHEET IN A POROUS MEDIUM: A NUMERICAL STUDY
Proceedings of the 25th National and 3rd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2019), Vol.0, 2019, issue
Rajesh Sharma, Ankita Bisht
MHD NATURAL CONVECTION BOUNDARY LAYER FLOW OF NANOFLUID OVER A VERTICAL CONE WITH CHEMICAL REACTION AND SUCTION/INJECTION
Computational Thermal Sciences: An International Journal, Vol.9, 2017, issue 2
Patakota Sudarsana Reddy, Ali J. Chamkha, P. Sreedevi