Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Porous Media
Impact-faktor: 1.49 5-jähriger Impact-Faktor: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Druckformat: 1091-028X
ISSN Online: 1934-0508

Volumes:
Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v20.i1.10
pages 1-17

HEAT AND MASS TRANSFER CHARACTERISTICS OF Al2O3−WATER AND Ag−WATER NANOFLUID THROUGH POROUS MEDIA OVER A VERTICAL CONE WITH HEAT GENERATION/ABSORPTION

P. Sudarsana Reddy
Department of Mathematics, RGM College of Engineering and Technology, Nandyal 518501, AP, India
Ali J. Chamkha
Department of Mechanical Engineering, Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University, Al-Khobar 31952, Kingdom of Saudi Arabia; RAK Research and Innovation Center, American University of Ras Al Khaimah, United Arab Emirates, 10021

ABSTRAKT

In this article, we have presented a numerical solution to the MHD heat and mass transfer flow of a nanofluid through porous media over a vertical cone with heat generation/absorption, thermal radiation, and chemical reaction. Though we have different varieties of nanofluids, we have considered Al2O3−water and Ag−water based nanofluids (with volume fraction 1% and 4%) in this problem. The transformed conservation equations for the nanofluid are solved numerically subject to the boundary conditions using an efficient, extensively validated, variational finite element analysis. The numerical code is validated with previous studies. The influence of important nondimensional parameters, namely, nanoparticle volume fraction (φ), Prandtl number (Pr), magnetic parameter (M), mixed convection (Ra), buoyancy ratio (Nr), and space-dependent (A), temperature-dependent (B), thermal radiation (R), and chemical reaction (Cr) on velocity, temperature, and nanoparticle concentration fields as well as the skin-friction coefficient, Nusselt number, and Sherwood number are examined in detail and the results are shown graphically and in tabular form to illustrate the physical importance of the problem.


Articles with similar content:

MHD NATURAL CONVECTION BOUNDARY LAYER FLOW OF NANOFLUID OVER A VERTICAL CONE WITH CHEMICAL REACTION AND SUCTION/INJECTION
Computational Thermal Sciences: An International Journal, Vol.9, 2017, issue 2
Patakota Sudarsana Reddy, Ali J. Chamkha, P. Sreedevi
EFFECTS OF JOULE HEATING ON MHD FREE CONVECTIVE FLOW ALONG A MOVING VERTICAL PLATE IN POROUS MEDIUM
Special Topics & Reviews in Porous Media: An International Journal, Vol.7, 2016, issue 2
Konda Jayarami Reddy, K. Ramakrishna, R. Chandrasekhar Reddy
FREE CONVECTIVE HEAT AND MASS TRANSFER FLOW OF HEAT-GENERATING NANOFLUID PAST A VERTICAL MOVING POROUS PLATE IN A CONDUCTING FIELD
Special Topics & Reviews in Porous Media: An International Journal, Vol.7, 2016, issue 2
G. S. S. Raju, M. C Raju, P. Chandra Reddy
HEAT AND MASS TRANSFER BOUNDARY-LAYER FLOW OVER A VERTICAL CONE THROUGH POROUS MEDIA FILLED WITH A Cu–WATER AND Ag–WATER NANOFLUID
Heat Transfer Research, Vol.49, 2018, issue 2
Ali F. Al-Mudhaf, Patakota Sudarsana Reddy, Ali J. Chamkha, P. Sreedevi
SLIP VELOCITY EFFECTS ON CONVECTION FROM A VERTICAL SURFACE EMBEDDED IN A POROUS MEDIUM
Journal of Porous Media, Vol.17, 2014, issue 12
V. M. Al-Khliefat, Hamzeh M. Duwairi