Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Porous Media
Impact-faktor: 1.752 5-jähriger Impact-Faktor: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Druckformat: 1091-028X
ISSN Online: 1934-0508

Volumes:
Volumen 23, 2020 Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.2019028905
pages 1359-1377

SIMULATING STEADY SATURATED GROUNDWATER FLOW USING CONVERGING–DIVERGING PIPE NETWORKS AND ITS NUMERICAL SOLUTION

Parjang Monajemi
Fasa University, Fasa, Iran
Gholamreza Rakhshandehroo
Shiraz University, Shiraz, Iran
Aliakbar Hekmatzadeh
Shiraz University of Technology, Shiraz, Iran

ABSTRAKT

In this paper, porous media is modeled by a network of cylindrical and converging–diverging pipes which is then employed as a numerical tool to solve steady saturated groundwater flow. This model, similar to finite difference (FD) and finite element (FE) models, transforms the governing equation into a set of linear algebraic equations. It is shown that the coefficients of the obtained matrix are a function of how the pipes converge and diverge (curvature number). By solving three different examples, it is shown that curvature number of ∞ and -0.30557 are equivalent to FD and FE, respectively, and curvature numbers within this range yield more accurate results compared to FD and FE methods. By increasing the number of meshes, the curvature number minimizing the total error in the domain approaches 0.71508 in all examples. It is concluded that the proposed model may be considered as a novel numerical tool for solving steady saturated groundwater flow with higher accuracies and rates of convergence compared to traditional methods such as FD and FE. Moreover, since the construction of the matrix of the proposed method is much easier than FE and FD, and in addition the model may be conceptualized much easier than traditional numerical methods, the proposed method may serve as an educational tool for numerical modeling and easily be employed by those who are not an expert in numerical techniques.


Articles with similar content:

A Comparison of Theory and Experiments for Accuracy, Stability and Oscillations of Transient Heat Conduction
International Heat Transfer Conference 6, Vol.3, 1978, issue
R. Yalamanchili
A NEW VOXEL UPSCALING METHOD BASED ON DIGITAL ROCK
International Journal for Multiscale Computational Engineering, Vol.13, 2015, issue 4
Yongfei Yang, Ying Gao, Chenchen Wang, Jun Yao
A MULTIGRID MULTILEVEL MONTE CARLO METHOD USING HIGH-ORDER FINITE-VOLUME SCHEME FOR LOGNORMAL DIFFUSION PROBLEMS
International Journal for Uncertainty Quantification, Vol.7, 2017, issue 1
Cornelis W. Oosterlee, Prashant Kumar, Richard P. Dwight
FAST AND FLEXIBLE UNCERTAINTY QUANTIFICATION THROUGH A DATA-DRIVEN SURROGATE MODEL
International Journal for Uncertainty Quantification, Vol.8, 2018, issue 2
Gerta Köster, Hans-Joachim Bungartz, Felix Dietrich, Tobias Neckel, Florian Künzner
CONVECTIVE HEAT TRANSFER OVER A 3-D BACKWARD FACING STEP
ICHMT DIGITAL LIBRARY ONLINE, Vol.3, 1997, issue
David B. Carrington, Darrell W. Pepper