Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Porous Media
Impact-faktor: 1.49 5-jähriger Impact-Faktor: 1.159 SJR: 0.43 SNIP: 0.671 CiteScore™: 1.58

ISSN Druckformat: 1091-028X
ISSN Online: 1934-0508

Volumes:
Volumen 23, 2020 Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v16.i1.40
pages 29-40

AN ANALYTICAL EXPRESSION FOR THE DISPERSION COEFFICIENT IN POROUS MEDIA USING CHANG'S UNIT CELL

Helen D. Lugo-Mendez
Departamento de I.P.H., Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340, Mexico, D.F., Mexico
Francisco J Valdes-Parada
Universidad Autonoma, Metropolitana-Iztapalapa, Col. Vicentino, Mexico
J Alberto Ochoa-Tapia
Departamento de I.P.H., Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340, Mexico, D.F., Mexico

ABSTRAKT

Mathematical modeling of transport phenomena in hierarchical systems is often carried out by means of effective medium equations resulting from upscaling techniques. For the case of convection and diffusion taking place at the pore scale, the upscaled model is expressed in terms of a total dispersion tensor, which encompasses the essential features from the microscale. Several theoretical and experimental works have evidenced that the dispersion coefficient follows a power-law dependence with the particle Peclet number. In this work, we show that such functionality can be derived analytically using the method of volume averaging with Chang's unit cell. Our derivations lead to an expression for the dispersion coefficient that reduces to the classical result by Maxwell under purely diffusive conditions. Interestingly, the dispersivity is found to follow a nontrivial functionality with the particle Peclet number. The predictions from our analytical expression are compared with those obtained by solving the same closure problem in periodic unit cells showing, in general, good agreement, especially for homothetic unit cells.


Articles with similar content:

EULERIAN-LAGRANGIAN APPROACH TO MODELING HEAT TRANSFER IN GAS-PARTICLE MIXTURES: VOLUME-AVERAGED EQUATIONS, MULTI-SCALE MODELING AND COMPARISON WITH NUMERICAL EXPERIMENTS
International Heat Transfer Conference 16, Vol.18, 2018, issue
Olivier Simonin, Y. Davit, Fabien Duval, Michel Quintard, Mohamed Belerrajoul
Computational Evaluation of Strain Gradient Elasticity Constants
International Journal for Multiscale Computational Engineering, Vol.2, 2004, issue 4
N. A. Fleck, R. H. J. Peerlings
HOMOGENIZATION OF THE SPECTRAL EQUATION IN ONE DIMENSION
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 5
Michel Lenczner, Matthieu Brassart, Thi Trang Nguyen
AN APPROACH TO MODELING OF DEFORMATION OF MEDIA WITH POROSITIES OF DIFFERENT SCALES
Composites: Mechanics, Computations, Applications: An International Journal, Vol.4, 2013, issue 2
P. S. Shushpannikov, Yury Solyaev
EFFECT OF HOMOGENEOUS AND HETEROGENEOUS SOURCE TERMS ON THE MACROSCOPIC DESCRIPTION OF HEAT TRANSFER IN POROUS MEDIA
Proceedings of Symposium on Energy Engineering in the 21st Century (SEE2000) Volume I-IV, Vol.0, 2000, issue
Bruno Ladevie, Michel Quintard, Stephen Whitaker