Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Porous Media
Impact-faktor: 1.752 5-jähriger Impact-Faktor: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Druckformat: 1091-028X
ISSN Online: 1934-0508

Volumes:
Volumen 23, 2020 Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v18.i9.70
pages 907-922

MULTIPLE SLIP EFFECTS ON UNSTEADY MAGNETOHYDRODYNAMIC NANOFLUID TRANSPORT WITH HEAT GENERATION/ABSORPTION EFFECTS IN TEMPERATURE DEPENDENT POROUS MEDIA

Osman Anwar Beg
Gort Engovation-Aerospace, Medical and Energy Engineering, Gabriel's Wing House, 15 Southmere Avenue, Bradford, BD73NU, United Kingdom; Fluid Mechanics, Department of Mechanical and Aeronautical Engineering, Salford University, M54WT, England, United Kingdom
Waqar Khan
Prince Mohammad Bin Fahd University
Mohammed Jashim Uddin
School of Mathematical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; Department of Mathematics, American International University-Bangladesh, Banani, Dhaka 1213, Bangladesh

ABSTRAKT

Transient hydromagnetic flow, heat, and mass transfer of a conducting nanofluid in a Darcian porous medium is studied. The heat generation/absorption effect is incorporated based on the dual formulation of Tsai et al. (Tsai, R., Huang, K. H., and Huang, J. S., Flow and Heat Transfer over an Unsteady Stretching Surface with Non-Uniform Heat Source, Int. Commun. Heat Mass Transfer, vol. 35, pp. 1340-1343, 2008), for space and temperature dependence. Multiple slip phenomena are also featured in the model to simulate certain industrial polymer flows where the no-slip wall boundary condition is violated. A 2D unsteady incompressible boundary layer model is developed for water based nanofluid containing two different types of nanoparticles, namely alumina and copper nanoparticles. The resulting partial differential equations with corresponding boundary conditions are rendered into a system of coupled ordinary differential equations via suitable similarity transformations. The nonlinear boundary value problem is then solved with Maple quadrature. Validation of solutions is achieved with previous studies for selected values of Prandtl number and temperature-dependent heat generation/absorption parameter, demonstrating very good correlation. The influence of Richardson number, buoyancy ratio parameter, nanoparticle solid volume fraction, magneto-hydrodynamic body force parameter, Darcy number, unsteadiness parameter, wall transpiration (suction/injection parameter), velocity slip parameter, thermal slip parameter, mass slip parameter, space- and temperature-dependent heat source/sink parameter on velocity, temperature, and concentration distributions are examined. Furthermore the effects of these parameters on skin friction, Nusselt number, and Sherwood number are also analyzed. The present simulations are relevant to magnetohydrodynamic energy devices exploiting nanofluids.


Articles with similar content:

NUMERICAL INVESTIGATION OF NANOFLUID HEAT TRANSFER IN AN INCLINED STRETCHING CYLINDER UNDER THE INFLUENCE OF SUCTION/ INJECTION AND VISCOUS DISSIPATION
Nanoscience and Technology: An International Journal, Vol.10, 2019, issue 1
Manoj Kumar, Shikha Kandwal, Ashish Mishra
INCLINED MAGNETIC FIELD EFFECT ON CASSON NANOFLUID FLOW IN A POROUS MEDIUM WITH JOULE AND VISCOUS DISSIPATIONS
Special Topics & Reviews in Porous Media: An International Journal, Vol.11, 2020, issue 4
Md. Sharifuddin Ansari, Mumukshu H. Trivedi
HEAT TRANSFER AND ENTROPY GENERATION DUE TO A NANOFLUID OVER STRETCHING CYLINDER: EFFECTS OF THERMAL STRATIFICATION
Computational Thermal Sciences: An International Journal, Vol.9, 2017, issue 1
Sameh Elsayed Ahmed, Shadia S. Mohamed, M. A. Mansour, A. Mahdy
NUMERICAL INVESTIGATION OF HEAT TRANSFER OF MHD NANOFLUID OVER A VERTICAL CONE DUE TO VISCOUS-OHMIC DISSIPATION AND SLIP BOUNDARY CONDITIONS
Nanoscience and Technology: An International Journal, Vol.10, 2019, issue 2
Manoj Kumar, Ashish Mishra, Alok Kumar Pandey
RADIATION EFFECT ON NATURAL CONVECTION OVER AN INCLINED WAVY SURFACE EMBEDDED IN A NON-DARCY POROUS MEDIUM SATURATED WITH A NANOFLUID
Journal of Porous Media, Vol.18, 2015, issue 8
D. Srinivasacharya, P. Vijay Kumar