Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Journal of Porous Media
Impact-faktor: 1.752 5-jähriger Impact-Faktor: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN Druckformat: 1091-028X
ISSN Online: 1934-0508

Volumes:
Volumen 23, 2020 Volumen 22, 2019 Volumen 21, 2018 Volumen 20, 2017 Volumen 19, 2016 Volumen 18, 2015 Volumen 17, 2014 Volumen 16, 2013 Volumen 15, 2012 Volumen 14, 2011 Volumen 13, 2010 Volumen 12, 2009 Volumen 11, 2008 Volumen 10, 2007 Volumen 9, 2006 Volumen 8, 2005 Volumen 7, 2004 Volumen 6, 2003 Volumen 5, 2002 Volumen 4, 2001 Volumen 3, 2000 Volumen 2, 1999 Volumen 1, 1998

Journal of Porous Media

DOI: 10.1615/JPorMedia.v14.i9.50
pages 805-814

A STUDY OF HEAT TRANSFER AND PRESSURE DROP DURING CONDENSATION AND EVAPORATION PROCESSES IN POROUS MEDIA, USING EXPERIMENTAL WORK AND DIMENSIONAL ANALYSIS: A CASE STUDY OF CARBON DIOXIDE (CO2)

Mohammad Tarawneh
Mechanical Engineering Department The Hashemite University, Zarqa 13115 Jordan
A. Alshqirate
Al-Shoubak University College, Al-Balqa' Applied University, Al-Salt, Jordan
Mahmoud Ahmad Hammad
University of Jordan

ABSTRAKT

This work presents experimental and analytical studies of convection change phase heat transfer coefficient and pressure drop during flow inside tubes filled with porous media (sand). Condensation and evaporation processes were considered. Carbon dioxide was used as a flowing fluid over a wide range of inlet pressures, porosities, and mass flow rates. The pressure drop was found to be significantly reasonable in condensation and negligible for evaporation processes. The experimental results of the convective heat transfer coefficient and pressure drop during these flows were obtained, listed as experimental data, and used to develop empirical correlations using the dimensional analysis method. The analytical data produced from developed correlations were listed. Comparison between experimental results and those obtained analytically proved to be compatible with an average standard deviation (ASD) of 5.97% for pressure drop, while for the convective heat transfer coefficient during condensation process the ASD was 7.35%, and for the convective heat transfer coefficient during evaporation processes the ASD was 4.6%.


Articles with similar content:

PERMEABILITY OF ABEOKUTA RIVERBED SEDIMENTS
Special Topics & Reviews in Porous Media: An International Journal, Vol.3, 2012, issue 3
Olukayode Dewumi Akinyemi, Bisola Adesegun, Sunday Akinpelu
COMPUTATIONAL HEAT TRANSFER MODELLING OF RICE - WATER SUSPENSION IN TUBE
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2012, issue
Kanishka Bhunia, A. K. Datta
TRANSIENT CONVECTION HEAT TRANSFER FOR HELIUM GAS UNDER EXPERIMENTALLY DECREASING FLOW CONDITIONS
International Heat Transfer Conference 16, Vol.9, 2018, issue
Makoto Shibahara, Qiusheng Liu, Katsuya Fukuda
MODEL OF NONEQUILIBRIUM DRYING HOLLOW CYLINDRICAL POROUS MEDIA
Heat Transfer Research, Vol.51, 2020, issue 8
Yize Sun, Dong Zhang, Zhuo Meng
Effect of Hydraulic Diameter on Condensation of R-134A in Flat, Extruded Aluminum Tubes
Journal of Enhanced Heat Transfer, Vol.8, 2001, issue 2
Ralph L. Webb, Kemal Ermis