Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Critical Reviews™ in Biomedical Engineering
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN Druckformat: 0278-940X
ISSN Online: 1943-619X

Volumes:
Volumen 47, 2019 Volumen 46, 2018 Volumen 45, 2017 Volumen 44, 2016 Volumen 43, 2015 Volumen 42, 2014 Volumen 41, 2013 Volumen 40, 2012 Volumen 39, 2011 Volumen 38, 2010 Volumen 37, 2009 Volumen 36, 2008 Volumen 35, 2007 Volumen 34, 2006 Volumen 33, 2005 Volumen 32, 2004 Volumen 31, 2003 Volumen 30, 2002 Volumen 29, 2001 Volumen 28, 2000 Volumen 27, 1999 Volumen 26, 1998 Volumen 25, 1997 Volumen 24, 1996 Volumen 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.v37.i4-5.40
pages 377-398

Embryonic and Induced Pluripotent Stem Cells as a Model for Liver Disease

Hiroshi Yagi
Department of Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
Edgar Tafaleng
1Center for Innovative Regenerative Therapies, Department of Surgery, Transplantation Section, Children's Hospital of Pittsburgh, McGowan Institute for Regenerative Medicine and University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA
Masaki Nagaya
Center for Innovative Regenerative Therapies, Department of Surgery, Transplantation Section, Children's Hospital of Pittsburgh, McGowan Institute for Regenerative Medicine and University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA
Marc C. Hansel
Center for Innovative Regenerative Therapies, Dept.of Surgery, Transplantation Section, Children's Hospital of Pittsburgh, McGowan Institute for Regenerative Medicine and Dept.of Pathology, University of Pittsburgh Medical School, Pennsylvania, USA
Stephen C. Strom
Center for Innovative Regenerative Therapies, Dept.of Surgery, Transplantation Section, Children's Hospital of Pittsburgh, McGowan Institute for Regenerative Medicine and Dept.of Pathology, University of Pittsburgh Medical School, Pennsylvania, USA
Ira J. Fox
Center for Innovative Regenerative Therapies, Department of Surgery, Transplantation Section, Children's Hospital of Pittsburgh, McGowan Institute for Regenerative Medicine and University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA
Alejandro Soto-Gutierrez
Center for Innovative Regenerative Therapies, Department of Surgery, Transplantation Section, Children's Hospital of Pittsburgh, McGowan Institute for Regenerative Medicine and University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA

ABSTRAKT

Induced pluripotent stem (iPS) cells are human somatic cells that have been reprogrammed to a pluripotent state. Through several elegant technologies, we are now able to generate human iPS cells with disease genotypes that could serve as invaluable tools for human disease modeling. This could lead to an understanding of the root causes of a disease and to the development of effective prophylactic and therapeutic strategies for it. However, we are still far from generating fully functional liver cells from stem cells, including iPS cells, on in vitro culture systems. Tissue-engineering techniques have opened the window to inducing a functional fate for differentiated cells by providing a microenvironment that allows the maintenance of signals similar to those found in the natural microenvironment. Here we review the current technology to establish iPS cells and discuss strategies to generate human liver disease modeling using iPS cell technology in concert with bioengineering approaches.


Articles with similar content:

The Concept of Physiological Supersystems: New Stage of Integrative Physiology
International Journal of Physiology and Pathophysiology, Vol.9, 2018, issue 2
Vadim F. Sagach, Rafik D. Grygoryan
Progress Toward Skeletal Gene Therapy
Critical Reviews™ in Eukaryotic Gene Expression, Vol.14, 2004, issue 1&2
Henry J. Klamut, Shin-Tai Chen, David J. Baylink, K.-H. William Lau
MicroRNA Regulation of T-Lymphocyte Immunity: Modulation of Molecular Networks Responsible for T-Cell Activation, Differentiation, and Development
Critical Reviews™ in Immunology, Vol.33, 2013, issue 5
Daniel R. Salomon, Katie Podshivalova
Emerging Roles of MicroRNAs in the Wnt Signaling Network
Critical Reviews™ in Oncogenesis, Vol.18, 2013, issue 4
Troels Schepeler
Antisense Oligonucleotide Therapeutics for Human Leukemia
Critical Reviews™ in Oncogenesis, Vol.8, 1997, issue 1
Alan M. Gewirtz