Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Critical Reviews™ in Biomedical Engineering
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN Druckformat: 0278-940X
ISSN Online: 1943-619X

Volumes:
Volumen 47, 2019 Volumen 46, 2018 Volumen 45, 2017 Volumen 44, 2016 Volumen 43, 2015 Volumen 42, 2014 Volumen 41, 2013 Volumen 40, 2012 Volumen 39, 2011 Volumen 38, 2010 Volumen 37, 2009 Volumen 36, 2008 Volumen 35, 2007 Volumen 34, 2006 Volumen 33, 2005 Volumen 32, 2004 Volumen 31, 2003 Volumen 30, 2002 Volumen 29, 2001 Volumen 28, 2000 Volumen 27, 1999 Volumen 26, 1998 Volumen 25, 1997 Volumen 24, 1996 Volumen 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.2018027166
pages 341-367

Understanding the Role of Innate Immunity in the Response to Intracortical Microelectrodes

John K. Hermann
Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg, Cleveland, OH 44106; Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland VA Medical Center, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106-1702
Jeffrey R. Capadona
Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Wickenden Bldg, Cleveland, OH 44106; Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland VA Medical Center, 10701 East Blvd. Mail Stop 151 AW/APT, Cleveland, OH 44106-1702

ABSTRAKT

Intracortical microelectrodes exhibit enormous potential for researching the nervous system, steering assistive devices and functional electrode stimulation systems for severely paralyzed individuals, and augmenting the brain with computing power. Unfortunately, intracortical microelectrodes often fail to consistently record signals over clinically useful periods. Biological mechanisms, such as the foreign body response to intracortical microelectrodes and self-perpetuating neuroinflammatory cascades, contribute to the inconsistencies and decline in recording performance. Unfortunately, few studies have directly correlated microelectrode performance with the neuroinflammatory response to the implanted devices. However, of those select studies that have, the role of the innate immune system remains among the most likely links capable of corroborating the results of different studies, across laboratories. Therefore, the overall goal of this review is to highlight the role of innate immunity signaling in the foreign body response to intracortical microelectrodes and hypothesize as to appropriate strategies that may become the most relevant in enabling brain-dwelling electrodes of any geometry, or location, for a range of clinical applications.


Articles with similar content:

Dendritic Cell-Derived Exosomes as Cell-Free Peptide-Based Vaccines
Critical Reviews™ in Immunology, Vol.25, 2005, issue 3
Julien Taieb, Nathalie Chaput, Laurence Zitvogel
Immunological Mechanisms Involved In Experimental Peptide Immunotherapy of T-Cell-Mediated Diseases
Critical Reviews™ in Immunology, Vol.20, 2000, issue 6
Marca H. M. Wauben
Biological, Mechanical, and Technological Considerations Affecting the Longevity of Intracortical Electrode Recordings
Critical Reviews™ in Biomedical Engineering, Vol.41, 2013, issue 6
Dustin J. Tyler, James P. Harris
Design, Control, and Sensory Feedback of Externally Powered Hand Prostheses: A Literature Review
Critical Reviews™ in Biomedical Engineering, Vol.41, 2013, issue 2
Aimee Cloutier, James Yang
Antigen Delivery to Plasmacytoid Dendritic Cells -Induction of Tolerance and Immunity
Critical Reviews™ in Immunology, Vol.32, 2012, issue 6
Jakob Loschko , Anne Krug