Abo Bibliothek: Guest
Digitales Portal Digitale Bibliothek eBooks Zeitschriften Referenzen und Berichte Forschungssammlungen
Critical Reviews™ in Biomedical Engineering
SJR: 0.207 SNIP: 0.376 CiteScore™: 0.79

ISSN Druckformat: 0278-940X
ISSN Online: 1943-619X

Volumes:
Volumen 47, 2019 Volumen 46, 2018 Volumen 45, 2017 Volumen 44, 2016 Volumen 43, 2015 Volumen 42, 2014 Volumen 41, 2013 Volumen 40, 2012 Volumen 39, 2011 Volumen 38, 2010 Volumen 37, 2009 Volumen 36, 2008 Volumen 35, 2007 Volumen 34, 2006 Volumen 33, 2005 Volumen 32, 2004 Volumen 31, 2003 Volumen 30, 2002 Volumen 29, 2001 Volumen 28, 2000 Volumen 27, 1999 Volumen 26, 1998 Volumen 25, 1997 Volumen 24, 1996 Volumen 23, 1995

Critical Reviews™ in Biomedical Engineering

DOI: 10.1615/CritRevBiomedEng.v30.i456.80
pages 459-485

Control of Multifunctional Prosthetic Hands by Processing the Electromyographic Signal

M. Zecca
ARTS Lab, Scuola Superiore Sant’Anna, Pontedera, Italy
Silvestro Micera
ARTS Lab, Scuola Superiore Sant'Anna, Polo Sant'Anna Valdera, Viale Rinaldo Piaggio, 34, 56025 Pontedera (PI), Italy
M. C. Carrozza
ARTS Lab, Scuola Superiore Sant’Anna, Pontedera, Italy
P. Dario
ARTS Lab, Scuola Superiore Sant’Anna, Pontedera, Italy

ABSTRAKT

The human hand is a complex system, with a large number of degrees of freedom (DoFs), sensors embedded in its structure, actuators and tendons, and a complex hierarchical control. Despite this complexity, the efforts required to the user to carry out the different movements is quite small (albeit after an appropriate and lengthy training). On the contrary, prosthetic hands are just a pale replication of the natural hand, with significantly reduced grasping capabilities and no sensory information delivered back to the user. Several attempts have been carried out to develop multifunctional prosthetic devices controlled by electromyographic (EMG) signals (myoelectric hands), harness (kinematic hands), dimensional changes in residual muscles, and so forth, but none of these methods permits the "natural" control of more than two DoFs. This article presents a review of the traditional methods used to control artificial hands by means of EMG signal, in both the clinical and research contexts, and introduces what could be the future developments in the control strategy of these devices.


Articles with similar content:

Control of Multifunctional Prosthetic Hands by Processing the Electromyographic Signal
Critical Reviews™ in Biomedical Engineering, Vol.45, 2017, issue 1-6
P. Dario, Silvestro Micera, M. Zecca, M. C. Carrozza
Design, Control, and Sensory Feedback of Externally Powered Hand Prostheses: A Literature Review
Critical Reviews™ in Biomedical Engineering, Vol.41, 2013, issue 2
Aimee Cloutier, James Yang
Autonomy and Exploitation in Clinical Research: What the Proposed Surfaxin Trial Can Teach Us about Consent
Ethics in Biology, Engineering and Medicine: An International Journal, Vol.3, 2012, issue 1-3
Mark L. Bourgeois
Control Performance and Stability Indices of Systems with Multiparameter Controllers
Journal of Automation and Information Sciences, Vol.43, 2011, issue 4
Dmitriy O. Kronikovskyi, Anatoliy P. Ladanyuk
MACROSCOPIC MUSCULAR MODELING BASED ON IN VIVO 4D RADIOLOGY
International Journal for Multiscale Computational Engineering, Vol.10, 2012, issue 2
Hans-Florian Zeilhofer, Luigi Gallo, Martin Mack, Britt-Isabelle Berg, Robert Sader, Maike Sturmat, Joerg Rieger, Cornelia Kober, Markus Boel